# $W^{2, p}$-a priori estimates for the emergent Poincaré Problem 

Dian K. Palagachev

Received: 25 May 2007 / Accepted: 28 May 2007 / Published online: 6 July 2007
© Springer Science+Business Media LLC 2007


#### Abstract

We derive $W^{2, p}(\Omega)$-a priori estimates with arbitrary $p \in(1, \infty)$, for the solutions of a degenerate oblique derivative problem for linear uniformly elliptic operators with low regular coefficients. The boundary operator is given in terms of directional derivative with respect to a vector field $\ell$ that is tangent to $\partial \Omega$ at the points of a non-empty set $\mathcal{E} \subset \partial \Omega$ and is of emergent type on $\partial \Omega$.


Keywords Uniformly elliptic operator • Poincaré problem • Emergent vector field • Strong solution • A priori estimates • $L^{p}$-Sobolev spaces

Mathematics Subject Classification (2000) Primary: 35J25 • 35R25; Secondary: 35R05 . 35B45.35H20-58J32

## 1 Introduction

The article deals with regularity in the Sobolev spaces $W^{2, p}(\Omega), \forall p \in(1, \infty)$, of the strong solutions to the oblique derivative problem

$$
\begin{array}{ll}
\mathcal{L} u:=a^{i j}(x) D_{i j} u+b^{i}(x) D_{i} u+c(x) u=f(x) & \text { a.e. } \Omega, \\
\mathcal{B} u:=\partial u / \partial \ell=\varphi(x) & \text { on } \partial \Omega, \tag{P}
\end{array}
$$

where $\mathcal{L}$ is a uniformly elliptic operator with low regular coefficients and $\mathcal{B}$ is prescribed in terms of a directional derivative with respect to the unit vector field $\ell(x)=\left(\ell^{1}(x), \ldots, \ell^{n}(x)\right)$ defined on $\partial \Omega, n \geq 3$. Precisely, we are interested in the Poincaré problem ( $\mathcal{P}$ ) (cf. [16,17, 20]), that is, a situation when $\ell(x)$ becomes tangential to $\partial \Omega$ at the points of a non-empty subset $\mathcal{E}$ of $\partial \Omega$.

[^0]From a mathematical point of view, $(\mathcal{P})$ is not an elliptic boundary value problem. In fact, it follows from the general PDEs theory that $(\mathcal{P})$ is a regular (elliptic) problem if and only if the Shapiro-Lopatinskij complementary condition is satisfied which means $\ell$ must be transversal to $\partial \Omega$ when $n \geq 3$ and $|\ell| \neq 0$ as $n=2$. If $\ell$ is tangent to $\partial \Omega$ then $(\mathcal{P})$ is a degenerate problem and new effects occur in contrast to the regular case. The qualitative properties of $(\mathcal{P})$ depend on the behaviour of $\ell$ near the set of tangency $\mathcal{E}$ and especially on the way the normal component $\gamma \boldsymbol{v}$ of $\ell$ changes or no its sign (with respect to the outward normal $\boldsymbol{v}$ to $\partial \Omega$ ) on the trajectories of $\ell$ when these cross $\mathcal{E}$. The main results were obtained by Hörmander [5], Egorov and Kondrat'ev [1], Maz'ya [8], Maz'ya and Paneah [9], Melin and Sjöstrand [10], Paneah [15] and good surveys and details can be found in Popivanov and Palagachev [20] and Paneah [16]. The problem ( $\mathcal{P}$ ) has been studied in the framework of Sobolev spaces $H^{s}\left(\equiv H^{s, 2}\right)$ assuming $C^{\infty}$-smooth data and this naturally involved techniques from the pseudo-differential calculus.

The simplest case arises when $\gamma:=\boldsymbol{\ell} \cdot \boldsymbol{v}$, even if zero on $\mathcal{E}$, conserves the sign on $\partial \Omega$ (Fig. 1). Then $\mathcal{E}$ and $\ell$ are of neutral type (a terminology coming from the physical interpretation of $(\mathcal{P})$ in the theory of Brownian motion, cf. [20]) and $(\mathcal{P})$ is a problem of Fredholm type [1]. Assume now that $\gamma$ changes the sign from " - " to " + " in positive direction along the $\ell$-integral curves through the points of $\mathcal{E}$. Then $\ell$ is of emergent type and $\mathcal{E}$ is called attracting manifold. The new effect occurring now is that the kernel of $(\mathcal{P})$ is infinite-dimensional [5] and to get a well-posed problem one has to modify $(\mathcal{P})$ by prescribing the values of $u$ on $\mathcal{E}$ (cf. [1]). Finally, suppose the sign of $\gamma$ changes from " + " to " - " along the $\ell$-trajectories. Now $\ell$ is of submergent type and $\mathcal{E}$ corresponds to a repellent manifold. The problem ( $\mathcal{P}$ ) has infinite-dimensional cokernel [5] and Maz'ya and Paneah [9] were the first to propose a relevant modification of $(\mathcal{P})$ by violating the boundary condition at the points of $\mathcal{E}$. As result, a Fredholm problem arises, but the restriction $\left.u\right|_{\partial \Omega}$ has a finite jump at $\mathcal{E}$. What is the common feature of the degenerate problems, independently of the type of $\ell$, is that the solution "loses regularity" near the set of tangency from the data of $(\mathcal{P})$ in contrast to the non-degenerate case when each solution gains two derivatives from $f$ and one derivative from $\varphi$. Roughly speaking, that loss of smoothness depends on the order of contact between $\ell$ and $\partial \Omega$ and is given by the subelliptic estimates obtained for the solutions of degenerate problems (cf. [3-5,9]). Precisely, if $\ell$ has a contact of order $k$ with $\partial \Omega$ then the solution of $(\mathcal{P})$ gains $2-k /(k+1)$ derivatives from $f$ and $1-k /(k+1)$ derivatives from $\varphi$.

For what concerns the geometric structure of $\mathcal{E}$, it was supposed initially to be a submanifold of $\partial \Omega$ of codimension one. Melin and Sjöstrand [10] and Paneah [15] were the first to study the Poincaré problem $(\mathcal{P})$ in a more general situation when $\mathcal{E}$ is a massive subset of $\partial \Omega$ with positive surface measure, allowing $\mathcal{E}$ to contain arcs of $\boldsymbol{\ell}$-trajectories of finite length. These results were extended to Hölder's spaces by Winzell [21,22] who studied ( $\mathcal{P}$ ) assuming $C^{1, \alpha}$-smoothness of the coefficients of $\mathcal{L}$.

When dealing with non-linear Poincaré problems, however, we have to dispose of precise information on the linear problem $(\mathcal{P})$ with coefficients less regular than $C^{\infty}$ (see [11,1820]). Indeed, a priori estimates in $W^{2, p}$ for solutions to ( $\mathcal{P}$ ) would imply easily pointwise


Fig. 1 Neutral (a), Emergent (b) and Submergent (c) vector field $\ell$
estimates for $u$ and $D u$ for suitable values of $p>1$ through the Sobolev imbeddings. This way, we are naturally led to consider $(\mathcal{P})$ in a strong sense, that is, to searching for solutions from $W^{2, p}$ which satisfy $\mathcal{L} u=f$ almost everywhere (a.e.) in $\Omega$ and $\mathcal{B} u=\varphi$ holds in the sense of trace on $\partial \Omega$.

In the papers $[3,4]$ by Guan and Sawyer solvability and fine subelliptic estimates have been obtained for ( $\mathcal{P}$ ) in $H^{s, p}$-spaces ( $\equiv W^{s, p}$ for integer $s!$ ). However [3], treats operators with $C^{\infty}$-coefficients and this determines the technique involved and the results obtained, while in [4] the coefficients are $C^{0, \alpha}$-smooth, but the field $\boldsymbol{\ell}$ is of finite type, that is, it has a finite order of contact with $\partial \Omega$.

The main goal of the article is to derive a priori estimates in Sobolev's classes $W^{2, p}(\Omega)$ with any $p \in(1, \infty)$ for the solutions to the Poincaré problem $(\mathcal{P})$, weakening both Winzell's assumptions on $C^{1, \alpha}$-regularity of the coefficients of $\mathcal{L}$ and these of Guan and Sawyer on the finite type of $\ell$. We deal with the case of emergent type vector field $\ell$ and, for the sake of simplicity, we suppose that $\mathcal{E}$ is a submanifold of $\partial \Omega$ of codimension one. As already mentioned, the kernel of $(\mathcal{P})$ is infinite dimensional and in order to get a well-posed problem we have to prescribe Dirichlet boundary condition on $\mathcal{E}$. Thus, we consider the modified Poincaré problem

$$
\begin{align*}
& \mathcal{L} u=f(x) \quad \text { a.e. } \Omega, \\
& \mathcal{B} u=\varphi(x) \quad \text { on } \partial \Omega, \quad u=\mu(x) \quad \text { on } \mathcal{E} \tag{MP}
\end{align*}
$$

instead of $(\mathcal{P})$. Indeed, the loss of smoothness mentioned, imposes some more regularity of the data near the set $\mathcal{E}$. We assume that the coefficients of $\mathcal{L}$ are Lipschitz continuous near $\mathcal{E}$ while only continuity (and even discontinuity controlled in $V M O$ ) is allowed away from $\mathcal{E}$. Similarly, $\boldsymbol{\ell}$ is a Lipschitz vector field on $\partial \Omega$ with Lipschitz continuous first derivatives near $\mathcal{E}$, and no restrictions on the order of contact with $\partial \Omega$ are imposed.

Our main result is the a priori estimate from Theorem 1 for each $W^{2, p}(\Omega)$-solution to $(\mathcal{M P})$ with arbitrary $p \in(1, \infty)$. The background of our approach lies in the fact that $\partial u / \partial \ell$ is a strong solution to a Dirichlet-type problem near $\mathcal{E}$ with right-hand side depending on the solution $u$ itself. Precisely, let $\mathcal{N}$ be the manifold formed by the inward normals to $\partial \Omega$ starting from $\mathcal{E}$ and suppose $\ell$ is appropriately extended in $\Omega$. Thanks to the emergent type of $\ell$, any point $x$ near $\mathcal{N}$ could be reached from a unique $x^{\prime} \in \mathcal{N}$ through an $\ell$-trajectory and integration of $\partial u / \partial \ell$ along it expresses $u(x)$ in terms of $u\left(x^{\prime}\right)$ and integral of $\partial u / \partial \ell$ over the $\operatorname{arc}$ connecting $x^{\prime}$ and $x$. The supplementary condition $\left.u\right|_{\mathcal{E}}=\mu$ provides for a $W^{2, p}(\mathcal{N})$ estimate for the restriction $\left.u\right|_{\mathcal{N}}$ which solves a uniformly elliptic Dirichlet problem over the manifold $\mathcal{N}$. Since $\partial u / \partial \ell$ is a local solution of a Dirichlet-type problem, the $L^{p}$-theory of such problems gives a bound for the $W^{2, p}$-norm of $\partial u / \partial \ell$ in terms of the same norm of $u$. This way, a dynamical systems approach based on integration of these norms along the $\ell$-trajectories through $\mathcal{N}$, leads to an estimate for the $W^{2, p}$-norm of $u$ near $\mathcal{N},\|u\|_{W^{2, p}}$, in terms of known quantities plus $C\|u\|_{W^{2, p}}$, where the multiplier $C$ is small when the arclengths of the $\ell$-trajectories joining $x$ with $x^{\prime}$ are small. Indeed, that procedure gives an a priori bound for $\|u\|_{W^{2, p}}$ in a neighbourhood of $\mathcal{E}$. Away from $\mathcal{E},(\mathcal{M P})$ is a regular oblique derivative problem and the $W^{2, p}(\Omega)$-a priori estimate follows from [7]. Another advantage of this approach is the improving-of-integrability property of the problem $(\mathcal{M P})$. Loosely speaking, it means that, even if $(\mathcal{M P})$ is a degenerate problem and therefore the solution loses derivatives from the data $f$ and $\varphi$, it behaves as an elliptic problem for what concerns the degree $p$ of integrability. That is, if $u \in W^{2, q}(\Omega)$ is a solution to $(\mathcal{M P})$ with $f \in L^{p}(\Omega)$ and $\partial f / \partial \ell \in L^{p}$ near $\mathcal{E}, \varphi \in W^{1-1 / p, p}(\partial \Omega)$ and $\varphi \in W^{2-1 / p, p}$ near $\mathcal{E}, \mu \in W^{2-1 / p, p}\left(\mathcal{E}_{0}\right)$ where $p \in[q, \infty)$, then $u \in W^{2, p}(\Omega)$.

Concluding this introduction, we refer the reader to the articles [12, 13, 14] , where various outgrowths of the $W^{2, p}(\Omega)$-a priori estimate and the improving-of-integrability property are derived for the Poincaré problem $(\mathcal{M P})$, such as maximum principle, uniqueness in $W^{2, p}(\Omega)$ for all $p>1$, strong solvability when $c(x) \leq 0$ a.e. $\Omega$, and it is proven that $(\mathcal{M P})$, even if a degenerate oblique derivative problem, is one of Fredholm type with index zero.

## 2 Improving of summability and $W^{2, p}$-a priori estimate

We are given a bounded domain $\Omega \subset \mathbb{R}^{n}, n \geq 3$, with reasonably smooth boundary for which $\boldsymbol{v}(x)=\left(\nu^{1}(x), \ldots, \nu^{n}(x)\right)$ is the unit outward normal at the point $x \in \partial \Omega$. Let $\ell(x)=\left(\ell^{1}(x), \ldots, \ell^{n}(x)\right)$ be a unit vector field defined on $\partial \Omega$ and decompose it into a sum of tangential and normal components, $\boldsymbol{\ell}(x)=\boldsymbol{\tau}(x)+\gamma(x) \boldsymbol{v}(x)$ at each $x \in \partial \Omega$. Here $\boldsymbol{\tau}(x), \boldsymbol{\tau}: \partial \Omega \rightarrow \mathbb{R}^{n}$, is the projection of $\ell(x)$ on the tangent hyperplane to $\partial \Omega$ at the point $x \in \partial \Omega$ (see Fig. 2), while $\gamma: \partial \Omega \rightarrow \mathbb{R}$ stands for the Euclidean inner product $\gamma(x):=\boldsymbol{\ell}(x) \cdot \boldsymbol{v}(x)$. Indeed, the set of zeroes of the function $\gamma(x)$,

$$
\mathcal{E}:=\{x \in \partial \Omega: \quad \gamma(x)=0\}
$$

is the subset of the boundary where the field $\ell(x)$ becomes tangent to it.
Set further $\partial \Omega^{ \pm}$for the relatively open sets (see Fig. 2)

$$
\partial \Omega^{+}:=\{x \in \partial \Omega: \gamma(x)>0\}, \quad \partial \Omega^{-}:=\{x \in \partial \Omega: \gamma(x)<0\}
$$

so that $\mathcal{E}$ is the common boundary of $\partial \Omega^{+}$and $\partial \Omega^{-}, \partial \Omega=\partial \Omega^{+} \cup \partial \Omega^{-} \cup \mathcal{E}$ and codim $\partial \Omega \mathcal{E}=$ 1. It is clear that $\partial \Omega^{+}$is the set of all boundary points $x$ where the field $\ell(x)$ points outwards $\Omega$, whereas it is pointed inward $\Omega$ on $\partial \Omega^{-}$. Regarding $\mathcal{E}$, we will suppose $\ell$ is strictly transversal to it and directed from $\partial \Omega^{-}$into $\partial \Omega^{+}$.

The standard summation convention on repeated indices is adopted throughout and $D_{i}:=$ $\partial / \partial x_{i}, D_{i j}:=\partial^{2} / \partial x_{i} \partial x_{j}$. The class of functions with Lipschitz continuous $k$ th order derivatives is denoted by $C^{k, 1}$, $W^{k, p}$ stands for the Sobolev space of functions with $L^{p}$-summable weak derivatives up to order $k \in \mathbb{N}$ and normed by $\|\cdot\|_{W^{k}, p}$, while $W^{s, p}(\partial \Omega)$ with $s>0$ noninteger, $p \in(1,+\infty)$, is the fractional-order Sobolev space. The Sarason class of functions

Fig. 2 The structure of the vector field $\ell$

with vanishing mean oscillation is denoted by $\operatorname{VMO}(\Omega)$. We use the standard parameterization $t \mapsto \psi_{L}(t, x)$ for the trajectory (phase curve and maximal integral curve) of a given vector field $\boldsymbol{L}$ passing through the point $x$, that is, $\partial_{t} \boldsymbol{\psi}_{\boldsymbol{L}}(t, x)=\boldsymbol{L} \circ \boldsymbol{\psi}_{\boldsymbol{L}}(t, x)$ and $\psi_{L}(0, x)=x$.

Fix hereafter $\Sigma \subset \bar{\Omega}$ to be a closed neighbourhood of $\mathcal{E}$ in $\bar{\Omega}$ and assume:

- uniform ellipticity of the operator $\mathcal{L}$ : there exists a constant $\lambda>0$ such that

$$
\begin{equation*}
\lambda^{-1}|\xi|^{2} \leq a^{i j}(x) \xi_{i} \xi_{j} \leq \lambda|\xi|^{2}, \quad a^{i j}(x)=a^{j i}(x) \quad \text { a.a. } x \in \Omega, \forall \xi \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

- regularity of the data:

$$
\begin{align*}
& a^{i j} \in V M O(\Omega) \cap C^{0,1}(\Sigma) \equiv V M O(\Omega) \cap W^{1, \infty}(\Sigma) \\
& b^{i}, c \in L^{\infty}(\Omega) \cap C^{0,1}(\Sigma) \equiv L^{\infty}(\Omega) \cap W^{1, \infty}(\Sigma),  \tag{2}\\
& \ell^{i} \in C^{0,1}(\partial \Omega) \cap C^{1,1}(\partial \Omega \cap \Sigma) ; \quad \partial \Omega \in C^{1,1}, \quad \partial \Omega \cap \Sigma \in C^{2,1}
\end{align*}
$$

- emergent type of the vector field $\boldsymbol{\ell}$ :
$\mathcal{E}$ is a $C^{2,1}$-smooth submanifold of $\partial \Omega$ of codimension one and $\ell(x)$
is strictly transversal to $\mathcal{E}$, pointing from $\partial \Omega^{-}$into $\partial \Omega^{+} \forall x \in \mathcal{E}$.
We will employ an extension of the field $\ell$ near $\partial \Omega$ which preserves therein its regularity and geometric properties. For each $x \in \Omega$ and close enough to $\partial \Omega$ define $\Gamma:=\{x \in$ $\Omega$ : dist $\left.(x, \partial \Omega) \leq d_{0}\right\}$ with $d_{0}>0$ sufficiently small. Thus, to each $x \in \Gamma$ there corresponds a unique $y(x) \in \partial \Omega$ closest to $x, y(x) \in C^{0,1}(\Gamma)$ while $y(x) \in C^{1,1}(\Gamma \cap \Sigma)$ (cf. [2, Chap. 14]). We set

$$
\boldsymbol{L}(x):=\ell(y(x)), \quad \boldsymbol{\tau}(x):=\boldsymbol{\tau}(y(x)) \quad \forall x \in \Gamma, \quad \mathcal{N}:=\{x \in \Gamma: y(x) \in \mathcal{E}\}
$$

It is clear from (2) and (3) that $\boldsymbol{L}, \boldsymbol{\tau} \in C^{0,1}(\Gamma) \cap C^{1,1}(\Gamma \cap \Sigma)$ and $|\boldsymbol{\tau}|_{\mathcal{N}} \mid=1$ in view of $\left.\left.\left.\boldsymbol{\tau}\right|_{\mathcal{N}} \equiv \boldsymbol{L}\right|_{\mathcal{N}} \equiv \boldsymbol{\ell}\right|_{\mathcal{E}}$. Moreover, $\mathcal{N}$ is a $C^{1,1}$-smooth manifold of dimension $(n-1)$ and the vector field $\boldsymbol{L}$ is strictly transversal to it.

In order to state our main results, we need to introduce special functional spaces which take into account the higher regularity near $\mathcal{E}$ of the data of $(\mathcal{M P})$. For any $p \in(1, \infty)$ define the Banach spaces

$$
\mathcal{F}^{p}(\Omega, \Sigma):=\left\{f \in L^{p}(\Omega): \partial f / \partial \boldsymbol{L} \in L^{p}(\Sigma)\right\}
$$

equipped with the norm $\|f\|_{\mathcal{F}^{p}(\Omega, \Sigma)}:=\|f\|_{L^{p}(\Omega)}+\|\partial f / \partial \boldsymbol{L}\|_{L^{p}(\Sigma)}$, and

$$
\Phi^{p}(\partial \Omega, \Sigma):=\left\{\varphi \in W^{1-1 / p, p}(\partial \Omega): \varphi \in W^{2-1 / p, p}(\partial \Omega \cap \Sigma)\right\}
$$

normed by $\|\varphi\|_{\Phi^{p}(\partial \Omega, \Sigma)}:=\|\varphi\|_{W^{1-1 / p, p}(\partial \Omega)}+\|\varphi\|_{W^{2-1 / p, p}(\partial \Omega \cap \Sigma)}$.
In the sequel the letter $C$ will denote positive constants depending on the data of $(\mathcal{M P})$, that is, on $n, p, \lambda$, the respective norms of the coefficients of $\mathcal{L}$ and $\mathcal{B}$ in $\Omega$ and $\Sigma$, the regularity of $\partial \Omega$ and the lower bound for the angle between $\ell$ and $\mathcal{E}$ [see (3)].

Our main result asserts that the couple ( $\mathcal{L}, \mathcal{B}$ ) improves the integrability of solutions to $(\mathcal{M P})$ for any $p \in(1, \infty)$ and provides for an a priori estimate in the $L^{p}$-Sobolev scales for any such solution.

Theorem 1 Suppose (1)-(3) and let $u \in W^{2, q}(\Omega)$ be a strong solution to ( $\mathcal{M P}$ ) with $f \in$ $\mathcal{F}^{p}(\Omega, \Sigma), \varphi \in \Phi^{p}(\partial \Omega, \Sigma)$ and $\mu \in W^{2-1 / p, p}(\mathcal{E})$ where $p \in[q, \infty)$.

Then $u \in W^{2, p}(\Omega)$ and there is a constant $C$ such that

$$
\begin{equation*}
\|u\|_{W^{2, p}(\Omega)} \leq C\left(\|u\|_{L^{p}(\Omega)}+\|f\|_{\mathcal{F}^{p}(\Omega, \Sigma)}+\|\varphi\|_{\Phi^{p}(\partial \Omega, \Sigma)}+\|\mu\|_{W^{2-1 / p, p}(\mathcal{E})}\right) . \tag{4}
\end{equation*}
$$

Some remarks follow which regard the behaviour of $\partial u / \partial \boldsymbol{L}$ in a neighbourhood of the tangency set $\mathcal{E}$ and traces of functions on $(n-1)$-dimensional manifolds.

Remark 2 (1) The directional derivative $\partial u / \partial \boldsymbol{L}$ of any $W^{2, p}$-solution to $(\mathcal{M P})$ is a $W^{2, p}$ ( $\Sigma$ )-function. In fact, $u \in W^{2, p}$ gives $\partial u / \partial \boldsymbol{L} \in W^{1, p}(\Sigma)$ and taking the difference quotients in $\boldsymbol{L}$-direction of the equation in $(\mathcal{M P})$, we get $\partial u / \partial \boldsymbol{L} \in W^{2, p}(\Sigma)$ in view of the regularity theory of uniformly elliptic equations (e.g. [2, Lemma 7.24,Chap. 8]). Moreover, $\partial u / \partial \boldsymbol{L}$ is a solution to the Dirichlet problem

$$
\begin{align*}
& \mathcal{L}(\partial u / \partial \boldsymbol{L})= \partial f / \partial \boldsymbol{L}+2 a^{i j} D_{j} L^{k} D_{k i} u+\left(a^{i j} D_{i j} L^{k}+b^{i} D_{i} L^{k}\right) D_{k} u \\
&-\left(\partial a^{i j} / \partial \boldsymbol{L}\right) D_{i j} u-\left(\partial b^{i} / \partial \boldsymbol{L}\right) D_{i} u-(\partial c / \partial \boldsymbol{L}) u \quad \text { a.e. } \Sigma,  \tag{5}\\
& \partial u / \partial \boldsymbol{L}=\varphi \quad \text { on } \partial \Omega \cap \Sigma,
\end{align*}
$$

where $\boldsymbol{L}(x)=\left(L^{1}(x), \ldots, L^{n}(x)\right)$ is the $C^{0,1}(\Gamma) \cap C^{1,1}(\Gamma \cap \Sigma)$-extension of $\boldsymbol{\ell}$. Therefore, once having $u \in W^{2, p}(\Omega)$ and the estimate (4), the $L^{p}$-theory of the uniformly elliptic equations (cf. Chap. 9 in [2]) gives

$$
\begin{align*}
\|\partial u / \partial \boldsymbol{L}\|_{W^{2, p}(\widetilde{\Sigma})} \leq & C^{\prime}\left(\|\partial u / \partial \boldsymbol{L}\|_{L^{p}(\Sigma)}+\|\partial f / \partial \boldsymbol{L}\|_{L^{p}(\Sigma)}+\|u\|_{W^{2, p}(\Sigma)}\right. \\
& \left.+\|\varphi\|_{W^{2-1 / p, p}(\partial \Omega \cap \Sigma)}\right) \\
\leq & C^{\prime}\left(\|u\|_{L^{p}(\Omega)}+\|f\|_{\mathcal{F}^{p}(\Omega, \Sigma)}+\|\varphi\|_{\Phi^{p}(\partial \Omega, \Sigma)}+\|\mu\|_{W^{2-1 / p, p}(\mathcal{E})}\right) \tag{6}
\end{align*}
$$

for each closed neighbourhood $\widetilde{\Sigma}$ of $\mathcal{E}$ in $\bar{\Omega}, \widetilde{\Sigma} \subset \Sigma$, where the constant $C^{\prime}$ depends on dist $(\widetilde{\Sigma}, \Omega \backslash \Sigma)$ in addition. In other words, if a strong solution $u$ to $(\mathcal{M P})$ belongs to $W^{2, p}(\Omega)$ then automatically $\partial u / \partial \boldsymbol{L} \in W^{2, p}(\Sigma)$ provided $f \in \mathcal{F}^{p}(\Omega, \Sigma)$ and $\varphi \in \Phi^{p}(\partial \Omega, \Sigma)$. Moreover, it will be evident from (5) and the proofs given below, that instead of the Lipschitz continuity of the coefficients of $\mathcal{L}$ in $\Sigma$ as (2) asks, it suffices to have essentially bounded their $\boldsymbol{L}$-directional derivatives.
(2) Let $u \in L_{\text {loc }}^{p}\left(\mathbb{R}^{n}\right), p>1$, and let $\mathcal{N}$ be the $(n-1)$-dimensional manifold of the inward normals through the points of $\mathcal{E}$ constructed above, which can be represented locally as $\mathcal{N}=\left\{x \in \mathbb{R}^{n}: x_{n}=\Phi\left(x^{\prime}\right), x^{\prime} \in \mathcal{O}^{\prime} \subset \mathbb{R}^{n-1}\right\}$ with $\Phi \in C^{1,1}\left(\mathcal{O}^{\prime}\right)$. Then the trace $\left.u\right|_{\mathcal{N}}$ is not well-defined because $\mathcal{N}$ has zero $n$-dimensional Lebesgue measure. However, if $u \in W_{\operatorname{loc}}^{1, p}\left(\mathbb{R}^{n}\right)$ then $\left.u\right|_{\mathcal{N}}$ exists and belongs to the fractional Sobolev space $W_{\operatorname{loc}}^{1-1 / p, p}(\mathcal{N})$. We are interested here on the intermediate situation when $u, \partial u / \partial x_{n} \in L_{\text {loc }}^{p}\left(\mathbb{R}^{n}\right)$. Then, redefining if necessary $u$ on a set of zero measure, $u\left(x^{\prime}, x_{n}\right)$ is absolutely continuous function in $x_{n}$ for a.a. $x^{\prime}$ and therefore $\partial u / \partial x_{n}\left(x^{\prime}, x_{n}\right)$ is a.e. classical derivative. This way, we define the trace $\widetilde{u}\left(x^{\prime}, \Phi\left(x^{\prime}\right)\right):=\left.u\right|_{\mathcal{N}}$ by the formula

$$
\begin{equation*}
\widetilde{u}\left(x^{\prime}, \Phi\left(x^{\prime}\right)\right)=u\left(x^{\prime}, x_{n}\right)-\int_{\Phi\left(x^{\prime}\right)}^{x_{n}} \frac{\partial u}{\partial x_{n}}\left(x^{\prime}, s\right) \mathrm{d} s \quad \text { a.a. }\left(x^{\prime}, \Phi\left(x^{\prime}\right)\right) \in \mathcal{N} . \tag{7}
\end{equation*}
$$

It follows from Fubini's theorem that $\tilde{u} \in L_{\text {loc }}^{p}(\mathcal{N})$. Moreover, having $u \in W_{\text {loc }}^{2, p}\left(\mathbb{R}^{n}\right)$ with $\partial u / \partial x_{n} \in W_{\text {loc }}^{2, p}\left(\mathbb{R}^{n}\right)$ then $\tilde{u} \in W_{\text {loc }}^{2, p}(\mathcal{H})$ and the trace operator $u \mapsto \widetilde{u}$ is compact one considered as mapping from $W_{\text {loc }}^{2, p}\left(\mathbb{R}^{n}\right)$ into $W_{\text {loc }}^{1, p}(\mathcal{N})$ (see [6]). That procedure applies to the more general situation in presence of the unit vector field $L$ which is transversal to $\mathcal{N}$. Thus, straightening $\boldsymbol{L}$ in a neighbourhood of an arbitrary point of $\mathcal{N}$ such that $\partial / \partial \boldsymbol{L} \equiv \partial / \partial x_{n}, \mathcal{N}$ could be represented locally as a graph of a function $\Phi \in C^{1,1}$, after that (7) applies. We will refer in the sequel to that procedure as taking trace on $\mathcal{N}$ along the L-trajectories through the points of $\mathcal{N}$.

These observations explain the assumption $\mu \in W^{2-1 / p, p}(\mathcal{E})$ in Theorem 1. In fact, suppose $u \in W^{2, p}(\Omega)$ is a solution of $(\mathcal{M P})$. Then $\left.u\right|_{\partial \Omega} \in W^{2-1 / p, p}(\partial \Omega)$ and taking once again trace on the ( $n-2$ )-dimensional submanifold $\mathcal{E}$ of $\partial \Omega$ would give $\left(\left.\left.u\right|_{\partial \Omega)}\right|_{\mathcal{E}} \in W^{2-2 / p, p}(\mathcal{E})\right.$. However, as it follows from (5) and (6), the higher-order regularity assumptions on the data near $\mathcal{E}$ ensure $\partial u / \partial \ell \in W^{2-1 / p, p}(\Sigma \cap \partial \Omega)$ and since $\ell$ is strictly transversal to $\mathcal{E}$ by (3), we have really $\left.u\right|_{\mathcal{E}} \in W^{2-1 / p, p}(\mathcal{E})$.

## 3 Proof of the main result

The statement of Theorem 1 will follow by the corresponding results away (Lemma 3) and near (Lemma 4) the set of tangency $\mathcal{E}$. Fix hereafter $\Sigma^{\prime} \subset \Sigma^{\prime \prime} \subset \Sigma$ to be closed neighbourhoods of $\mathcal{E}$ in $\bar{\Omega}$.

Lemma 3 Suppose (1), (2) and let $u \in W^{2, q}(\Omega)$ be a strong solution to ( $\mathcal{M P}$ ) with $f \in$ $L^{p}(\Omega)$ and $\varphi \in W^{1-1 / p, p}(\partial \Omega)$ where $p \in[q, \infty)$.

Then $u \in W^{2, p}\left(\Omega \backslash \Sigma^{\prime}\right)$ and there is an absolute constant $C$ such that

$$
\|u\|_{W^{2, p}\left(\Omega \backslash \Sigma^{\prime}\right)} \leq C\left(\|u\|_{L^{p}(\Omega)}+\|f\|_{L^{p}(\Omega)}+\|\varphi\|_{W^{1-1 / p, p}(\partial \Omega)}\right) .
$$

Proof The problem $(\mathcal{M P})$ is a regular oblique derivative problem out of $\Sigma^{\prime}$, with a field $\ell$ strictly transversal to $\partial \Omega$ and pointing into $\Omega$ on $\partial \Omega^{-} \backslash \Sigma^{\prime}$ and out of $\Omega$ on $\partial \Omega^{+} \backslash \Sigma^{\prime}$. The claims follow from or Theorem 2.3.1 of [7].

Lemma 4 Assume (1)-(3) and let $u \in W^{2, q}(\Omega)$ be a strong solution to $(\mathcal{M P})$ with $f \in$ $\mathcal{F}^{p}(\Omega, \Sigma), \varphi \in \Phi^{p}(\partial \Omega, \Sigma)$ and $\mu \in W^{2-1 / p, p}(\mathcal{E})$ where $p \in[q, \infty)$.

Then $u \in W^{2, p}\left(\Sigma^{\prime \prime}\right)$ and

$$
\begin{equation*}
\|u\|_{W^{2, p}\left(\Sigma^{\prime \prime}\right)} \leq C\left(\|u\|_{L^{p}(\Omega)}+\|f\|_{\mathcal{F}^{p}(\Omega, \Sigma)}+\|\varphi\|_{\Phi^{p}(\partial \Omega, \Sigma)}+\|\mu\|_{W^{2-1 / p, p}(\mathcal{E})}\right) . \tag{8}
\end{equation*}
$$

Proof Turning back to the neighbourhood $\Gamma$ of $\partial \Omega$ and the extension of $\ell$, we recall $\left.\boldsymbol{\tau}\right|_{\mathcal{N}} \equiv$ $\left.\boldsymbol{L}\right|_{\mathcal{N}}$ and $|\boldsymbol{\tau}|_{\mathcal{N}} \mid=1$. Therefore, there exists a closed neighbourhood $U$ of $\mathcal{N}$,

$$
U:=\{x \in \Sigma \cap \Gamma: \quad|\boldsymbol{\tau}(x)| \geq 1 / 2\}
$$

and setting $\boldsymbol{\tau}^{\prime}(x):=\boldsymbol{\tau}(x) /|\boldsymbol{\tau}(x)| \forall x \in U$, we get the unit vector field $\boldsymbol{\tau}^{\prime}$ coinciding with $\boldsymbol{\tau}$ on $\mathcal{N}$. The strict transversality of $\boldsymbol{\tau}^{\prime}$ to $\mathcal{N}$ assures that any point $\bar{x} \in U$ can be reached from a unique $\bar{x}^{\prime} \in \mathcal{N}$ along a trajectory of $\boldsymbol{\tau}^{\prime}$ in the positive/negative direction. Setting $t \rightarrow$ $\boldsymbol{\psi}_{\boldsymbol{\tau}^{\prime}}(t, \bar{x})$ for the integral curve of $\boldsymbol{\tau}^{\prime}$ through $\bar{x}$, we have $\bar{x}=\boldsymbol{\psi}_{\boldsymbol{\tau}^{\prime}}\left(\xi, \bar{x}^{\prime}\right), \bar{x}^{\prime} \in \mathcal{N}, \xi \in \mathbb{R}$ and $\operatorname{sign}(\xi)=\operatorname{sign}(\gamma(y(\bar{x})))$ (see Fig. 3b). Introduce new coordinates $(\xi, \eta, \zeta) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{n-2}$ in $U$ as follows. For any $\bar{x} \in U$ we set $\xi(\bar{x}) \in \mathbb{R}$ to be the length (with sign) of the $\boldsymbol{\tau}^{\prime}$ trajectory connecting $\bar{x}$ with the unique $\bar{x}^{\prime} \in \mathcal{N}$, i.e., $\bar{x}=\psi_{\tau^{\prime}}\left(\xi(\bar{x}), \bar{x}^{\prime}\right)$ and $\operatorname{sign}(\xi(\bar{x}))=$ $\operatorname{sign}(\gamma(y(\bar{x})))$. Define further $\eta(\bar{x}):=\operatorname{dist}\left(\bar{x}^{\prime}, \partial \Omega\right)=\operatorname{dist}\left(\boldsymbol{\psi}_{\tau^{\prime}}(-\xi(\bar{x}), \bar{x}), \partial \Omega\right)$. Finally, $\zeta(\bar{x}) \in \mathcal{E}$ is given by $\zeta(\bar{x}):=y\left(\boldsymbol{\psi}_{\boldsymbol{\tau}^{\prime}}(-\xi(\bar{x}), \bar{x})\right) \in \mathcal{E}$.

Let $\mathcal{S}, \partial \mathcal{S} \in C^{\infty}$, be the convex domain in the ( $\eta, \xi$ )-plane as given on Fig. 3a. Set $\Omega_{\delta}:=\left\{x \in U: \zeta(x) \in \mathcal{E},((\eta(x), \xi(x)) \in \delta \cdot \mathcal{S}\}\right.$ for $\delta \in\left(0, \delta_{0}\right]$ with $\delta_{0} \ll 1$ and $\delta \cdot \mathcal{S}$ standing for the dilation of $\mathcal{S}$ of factor $\delta$. Indeed, $\overline{\Omega_{\delta}} \subset U, \partial \Omega_{\delta} \in C^{1,1}$ and if $\delta_{0}$ is small enough then the field $\boldsymbol{L}$ is tangential to $\partial \Omega_{\delta}$ only at the points of $\mathcal{E}$ and these of $\mathcal{E}_{\delta}:=\left(\mathcal{N} \cap \partial \Omega_{\delta}\right) \backslash \mathcal{E}=$ $\mathcal{N} \cap \partial \Omega_{\delta} \cap \Omega$ and points outwards (inwards) $\Omega_{\delta}$ at $x \in \partial \Omega_{\delta} \backslash\left(\mathcal{E} \cup \mathcal{E}_{\delta}\right.$ ) when $y(x) \in \partial \Omega^{+}$ $\left(y(x) \in \partial \Omega^{-}\right)$. We define further

$$
\mathcal{N}_{\delta}:=\mathcal{N} \cap \Omega_{\delta}, \quad \partial \mathcal{N}_{\delta}:=\mathcal{E} \cup \mathcal{E}_{\delta} .
$$



Fig. 3 The dashed curves represent trajectories of the field $\boldsymbol{\tau}^{\prime}$, parameterized by $t \rightarrow \boldsymbol{\psi}_{\boldsymbol{\tau}^{\prime}}(t, \bar{x}), \bar{x}^{\prime} \in \mathcal{N}, \bar{x}=$ $\boldsymbol{\psi}_{\boldsymbol{\tau}^{\prime}}\left(\xi(\bar{x}), \bar{x}^{\prime}\right), \bar{x}^{\prime \prime}=\boldsymbol{\psi}_{\boldsymbol{\tau}^{\prime}}\left(\xi\left(\bar{x}^{\prime \prime}\right), \bar{x}^{\prime}\right)$. The other curves are $\boldsymbol{L}$-trajectories parameterized by $t \rightarrow \boldsymbol{\psi}_{\boldsymbol{L}}(t, x)$ and $x=\boldsymbol{\psi}_{\boldsymbol{L}}\left(s\left(x^{\prime}\right), x^{\prime}\right), x^{\prime \prime}=\boldsymbol{\psi}_{\boldsymbol{L}}\left(s\left(x^{\prime \prime}\right), x^{\prime}\right)$ with $x^{\prime} \in \mathcal{N}$.

Each point $x \in U$ can be reached from $x^{\prime} \in \mathcal{N}$ through an $L$-trajectory (see Fig. 3b). Setting $t \rightarrow \psi_{L}(t, x)$ for its parameterization, for each $x \in U$ there exists a unique value $s(x) \in C^{1,1}(U)$ of the parameter such that $\psi_{L}(-s(x), x)=x^{\prime} \in \mathcal{N}$ and without loss of generality we may assume $|s(x)| \leq \delta \forall x \in \Omega_{\delta}$. Now, for any $x^{\prime} \in \mathcal{N}$ define the trace of $f \in \mathcal{F}^{p}(\Omega . \Sigma)$ on $\mathcal{N}$ along the $\boldsymbol{L}$-trajectories by

$$
\widetilde{f}\left(x^{\prime}\right):=f(x)-\int_{0}^{s(x)} \frac{\partial f}{\partial \boldsymbol{L}} \circ \boldsymbol{\psi}_{\boldsymbol{L}}\left(t, x^{\prime}\right) \mathrm{d} t, \quad x \in U .
$$

It follows from Remark 2 that $\tilde{f}$ is well-defined on $\mathcal{N}$ and $\tilde{f} \in L^{p}(\mathcal{N})$. In the same manner, $u \in W^{2, q}(\Omega)$ and the trace $\widetilde{u}\left(x^{\prime}\right)=\left.u(x)\right|_{\mathcal{N}}:=u \circ \psi_{L}(-s(x), x)$ does exist.

Setting

$$
v(x):=\partial u(x) / \partial \boldsymbol{L} \quad \forall x \in \Omega_{\delta}
$$

it is obvious that

$$
\begin{align*}
u(x) & =\widetilde{u}\left(x^{\prime}\right)+\int_{0}^{s(x)} v \circ \boldsymbol{\psi}_{L}\left(t, x^{\prime}\right) \mathrm{d} t \\
& =u \circ \psi_{L}(-s(x), x)+\int_{0}^{s(x)} v \circ \psi_{L}(t-s(x), x) \mathrm{d} t, \quad \forall x \in \Omega_{\delta} . \tag{9}
\end{align*}
$$

To get the improving-of-summability property for $u(x)$ we will derive it for $\widetilde{u}\left(x^{\prime}\right)$ and $v(x)$, and we suppose $p>q$. Consider the action of $\mathcal{L}$ on the functions defined in $U$ which are constant on almost every $\boldsymbol{L}$-trajectory through $\mathcal{N}$. This defines a second order operator $\mathcal{L}^{\prime}$ on the $C^{1,1}$-smooth manifold $\mathcal{N}$, which is uniformly elliptic by virtue of (1) and the strict transversality of $\boldsymbol{L}$ to $\mathcal{N}$. This way, $\widetilde{u}\left(x^{\prime}\right)$ is a $W^{2, q}(\mathcal{N})$-solution of the following Dirichlet problem on the manifold $\mathcal{N}_{\delta}$

$$
\left\{\mathcal{L}^{\prime} \widetilde{u}=\widetilde{F}^{\prime} \quad \text { a.e. } \mathcal{N}_{\delta},\left.\quad \widetilde{u}\right|_{\partial \mathcal{N}_{\delta}}=\left\{\begin{array}{l}
\mu \text { on } \mathcal{E},  \tag{10}\\
u \text { on } \mathcal{E}_{\delta} .
\end{array}\right.\right.
$$

To get a local representation for the operator $\mathcal{L}^{\prime}$ we suppose, without loss of generality, that the field $\boldsymbol{L}$ is locally straighten in a neighbourhood of a point $x_{0} \in \mathcal{N}$ such that $\partial / \partial \boldsymbol{L} \equiv \partial / \partial x_{n}$ and $\mathcal{N}$ has the form $\left\{x_{n}=0\right\}$ near $x_{0}$. Thus, setting $x^{\prime}=\left(x_{1}, \ldots, x_{n-1}\right) \in \mathcal{O}^{\prime} \subset \mathcal{N}$, we have $v=\partial u / \partial \boldsymbol{L}=\partial u / \partial x_{n}$ and

$$
\begin{align*}
\mathcal{L}^{\prime} \widetilde{u}\left(x^{\prime}\right) \equiv & \sum_{i, j=1}^{n-1} a^{i j}\left(x^{\prime}, 0\right) D_{x_{i}^{\prime} x_{j}^{\prime}} \widetilde{u}\left(x^{\prime}\right)+\sum_{i=1}^{n-1} b^{i}\left(x^{\prime}, 0\right) D_{x_{i}} \widetilde{u}\left(x^{\prime}\right)+c\left(x^{\prime}, 0\right) \widetilde{u}\left(x^{\prime}\right) \\
= & \widetilde{F}^{\prime}\left(x^{\prime}\right):=\widetilde{f}\left(x^{\prime}\right)-\sum_{i=1}^{n-1} a^{i n}\left(x^{\prime}, 0\right)\left(\widetilde{D_{x_{i}^{\prime}} v}\right)\left(x^{\prime}\right)-a^{n n}\left(x^{\prime}, 0\right)\left(\widetilde{D_{x_{n}} v}\right)\left(x^{\prime}\right) \\
& -b^{n}\left(x^{\prime}, 0\right) \widetilde{v}\left(x^{\prime}\right) \tag{11}
\end{align*}
$$

where the "tilde" over a function means its trace value on $\mathcal{N}$ taken along the $\boldsymbol{L}$-trajectories in the sense of (7). We have $f \in \mathcal{F}^{p}(\Omega, \Sigma)$ and therefore $\tilde{f} \in L^{p}(\mathcal{N})$ as it follows from Remark 2 (2). Further, $v \in W^{2, q}(\Sigma)$ in view of Remark 2(1) and thus $\widetilde{v}, \widetilde{D_{x} v} \in L^{r}(\mathcal{N})$ with $r=(n-1) q /(n-q)$ if $q<n$ and arbitrary $r>1$ when $q \geq n$ (cf. Theorems 6.4.1 and 6.4.2 of [6]). This means $\widetilde{F}^{\prime} \in L^{q^{\prime}}\left(\mathcal{N}_{\delta}\right)$ with

$$
q^{\prime}= \begin{cases}\min \left\{p, \frac{(n-1) q}{n-q}\right\}, & \text { if } q<n  \tag{12}\\ p, & \text { otherwise }\end{cases}
$$

Further on, $\mu \in W^{2-1 / p, p}(\mathcal{E})$ and $\left.u\right|_{\mathcal{E}_{\delta}} \in W^{2-1 / p, p}$ by Lemma 3. and the $L^{p}$-theory (see [2]) yields that the solution $\tilde{u}$ of (10) belongs to $W^{2, q^{\prime}}\left(\mathcal{N}_{\delta}\right)$ with $q^{\prime}>q$.

To get increasing of summability for $v=\partial u / \partial \boldsymbol{L}$ also, we recall (see (5)) that the function $v$ is a $W^{2, q}$-solution of the Dirichlet problem

$$
\left\{\begin{array}{l}
\mathcal{L} v=\partial f / \partial \boldsymbol{L}+2 a^{i j} D_{j} L^{k} D_{k i} u+\left(a^{i j} D_{i j} L^{k}+b^{i} D_{i} L^{k}\right) D_{k} u  \tag{13}\\
\quad-\left(\partial a^{i j} / \partial \boldsymbol{L}\right) D_{i j} u-\left(\partial b^{i} / \partial \boldsymbol{L}\right) D_{i} u-(\partial c / \partial \boldsymbol{L}) u \quad \text { a.e. } \Omega_{\delta}, \\
v=\varphi \quad \text { on } \partial \Omega_{\delta} \cap \partial \Omega, \quad v=\partial u / \partial \boldsymbol{L} \quad \text { on } \partial \Omega_{\delta} \cap \Omega .
\end{array}\right.
$$

We have $\partial u / \partial \boldsymbol{L} \in W^{2-1 / p, p}\left(\partial \Omega_{\delta} \cap \Omega\right)$ by Lemma 3 and Remark 2(1), while $\varphi \in W^{2-1 / p, p}$ ( $\partial \Omega_{\delta} \cap \partial \Omega$ ). Take the second derivatives of $u$ from (9) and substitute them into the right-hand side of the equation above. This rewrites (13) into

$$
\left\{\begin{array}{l}
\mathcal{L} v=F(x)+\int_{0}^{s(x)}\left(\mathcal{L}_{2} v\right) \circ \psi_{L}\left(t, x^{\prime}\right) \mathrm{d} t, \quad \text { a.e. } \Omega_{\delta},  \tag{14}\\
v=\varphi \in W^{2-1 / p, p}, \quad \text { on } \partial \Omega_{\delta} \cap \partial \Omega, \quad v \in W^{2-1 / p, p} \quad \text { on } \partial \Omega_{\delta} \cap \Omega
\end{array}\right.
$$

with

$$
F(x):=\partial f(x) / \partial \boldsymbol{L}+\mathcal{L}_{1} v(x)+\widetilde{\mathcal{L}}_{2} \widetilde{u}\left(x^{\prime}\right) .
$$

Here $\mathcal{L}_{i}, i=1,2$, is a differential operator of order $i$ with $L^{\infty}$-coefficients and $\widetilde{L}_{2}$ is a second-order differential operator over the manifold $\mathcal{N}_{\delta}$. We have $\widetilde{u} \in W^{2, q^{\prime}}\left(\mathcal{N}_{\delta}\right)$ whence $\widetilde{L}_{2} \widetilde{u} \in L^{q^{\prime}}\left(\Omega_{\delta}\right)$. Moreover, $v \in W^{2, q}\left(\Omega_{\delta}\right)$ and Sobolev's imbedding theorem implies $\mathcal{L}_{1} v \in$ $L^{r}\left(\Omega_{\delta}\right)$ with $r=n q /(n-q)$ when $q<n$ and any $r>1$ otherwise. Since $\partial f / \partial L \in L^{p}(\Sigma)$
by hypotheses, we get $F \in L^{q^{\prime \prime}}\left(\Omega_{\delta}\right)$ with $q^{\prime \prime}=\min \left\{p, r, q^{\prime}\right\}$. It is clear that $q^{\prime \prime}=q^{\prime}$ with $q^{\prime}$ given by (12), $q^{\prime}>q$ and therefore $F \in L^{q^{\prime}}\left(\Omega_{\delta}\right)$.

We will prove now that the solution $v \in W^{2, q}\left(\Omega_{\delta}\right)$ of the non-local Dirichlet problem (14) with $F \in L^{q^{\prime}}\left(\Omega_{\delta}\right)$, belongs to $W^{2, q^{\prime}}\left(\Omega_{\delta}\right)$ when $\delta$ is chosen small enough. For, take any $r \in\left[q, q^{\prime}\right]$ and set $W_{*}^{2, r}\left(\Omega_{\delta}\right)$ for the Sobolev space $W^{2, r}\left(\Omega_{\delta}\right)$ equipped with the non-dimensional norm

$$
\|u\|_{W_{*}^{2, r}\left(\Omega_{\delta}\right)}:=\|u\|_{L^{r}\left(\Omega_{\delta}\right)}+\delta\|D u\|_{L^{r}\left(\Omega_{\delta}\right)}+\delta^{2}\left\|D^{2} u\right\|_{L^{r}\left(\Omega_{\delta}\right)} .
$$

For an arbitrary $w \in W_{*}^{2, r}\left(\Omega_{\delta}\right)$ we have $\int_{0}^{s(x)}\left(\mathcal{L}_{2} w\right) \circ \psi_{L}\left(t, x^{\prime}\right) d t \in L^{r}\left(\Omega_{\delta}\right)$ and therefore there exists a unique solution $\mathcal{F} w \in W_{*}^{2, r}\left(\Omega_{\delta}\right)$ of the Dirichlet problem

$$
\left\{\begin{array}{l}
\mathcal{L}(\mathcal{F} w)=F(x)+\int_{0}^{s(x)}\left(\mathcal{L}_{2} w\right) \circ \boldsymbol{\psi}_{L}\left(t, x^{\prime}\right) \mathrm{d} t \quad \text { a.a. } x \in \Omega_{\delta}, \\
\mathcal{F} w=\varphi \in W^{2-1 / p, p} \quad \text { on } \partial \Omega_{\delta} \cap \partial \Omega, \quad \mathcal{F} w=\partial u / \partial \boldsymbol{L} \in W^{2-1 / p, p} \quad \text { on } \partial \Omega_{\delta} \cap \Omega .
\end{array}\right.
$$

This defines a map $\mathcal{F}: W_{*}^{2, r}\left(\Omega_{\delta}\right) \rightarrow W_{*}^{2, r}\left(\Omega_{\delta}\right)$ which turns out to be a contraction if $\delta>0$ is taken small enough. In fact, for any $w_{1}, w_{2} \in W_{*}^{2, r}\left(\Omega_{\delta}\right)$ we have

$$
\left\{\begin{array}{l}
\mathcal{L}\left(\mathcal{F} w_{1}-\mathcal{F} w_{2}\right)=\int_{0}^{s(x)}\left(\mathcal{L}_{2}\left(w_{1}-w_{2}\right)\right) \circ \boldsymbol{\psi}_{L}\left(t, x^{\prime}\right) \mathrm{d} t \quad \text { a.a. } x \in \Omega_{\delta}  \tag{15}\\
\mathcal{F} w_{1}-\mathcal{F} w_{2}=0 \quad \text { on } \partial \Omega_{\delta}
\end{array}\right.
$$

In order to employ the $L^{r}$-a priori estimates for (15) (cf. [2]) we have to control the dependence on $\delta$ therein. That is why, we first dilate $\Omega_{\delta}$ into $\delta^{-1} \Omega_{\delta}$ for which $\partial\left(\delta^{-1} \Omega_{\delta}\right) \in C^{1,1}$ uniformly in $\delta$, and then apply the cited estimates. A procedure, similar to the one from the Proof of Lemma 2.2 and Equation (2.12) in [12] gives

$$
\begin{equation*}
\left\|\mathcal{F} w_{1}-\mathcal{F} w_{2}\right\|_{W_{*}^{2, r}\left(\Omega_{\delta}\right)} \leq C \delta^{2}\left\|\int_{0}^{s(x)}\left(\mathcal{L}_{2}\left(w_{1}-w_{2}\right)\right) \circ \boldsymbol{\psi}_{L}\left(t, x^{\prime}\right) \mathrm{d} t\right\|_{L^{r}\left(\Omega_{\delta}\right)} \tag{16}
\end{equation*}
$$

with a constant $C$ independent of $\delta>0$. Moreover, $\int_{0}^{s(x)} g \circ \psi_{L}\left(t, x^{\prime}\right) \mathrm{d} t \in L^{r}\left(\Omega_{\delta}\right)$ for each $g(x) \in L^{r}\left(\Omega_{\delta}\right)$ and application of Jensen's integral inequality leads to

$$
\begin{equation*}
\left\|\int_{0}^{s(x)} g \circ \boldsymbol{\psi}_{L}\left(t, x^{\prime}\right) \mathrm{d} t\right\|_{L^{r}\left(\Omega_{\delta}\right)} \leq C \max _{\Omega_{\delta}}|s(x)|\|g\|_{L^{r}\left(\Omega_{\delta}\right)} \leq C \delta\|g\|_{L^{r}\left(\Omega_{\delta}\right)} . \tag{17}
\end{equation*}
$$

This way, remembering $|s(x)| \leq \delta \forall x \in \Omega_{\delta}$, (16) rewrites as

$$
\left\|\mathcal{F} w_{1}-\mathcal{F} w_{2}\right\|_{W_{*}^{2, r}\left(\Omega_{\delta}\right)} \leq C \delta^{3}\left\|\mathcal{L}_{2}\left(w_{1}-w_{2}\right)\right\|_{L^{r}\left(\Omega_{\delta}\right)} \leq C \delta\left\|w_{1}-w_{2}\right\|_{W_{*}^{2, r}\left(\Omega_{\delta}\right)},
$$

whence

$$
\left\|\mathcal{F} w_{1}-\mathcal{F} w_{2}\right\|_{W_{*}^{2, r}\left(\Omega_{\delta}\right)} \leq K\left\|w_{1}-w_{2}\right\|_{W_{*}^{2, r}\left(\Omega_{\delta}\right)}, \quad K<1
$$

if $\delta>0$ is fixed small enough. Therefore, $\mathcal{F}$ is a contraction mapping from $W_{*}^{2, r}\left(\Omega_{\delta}\right)$ into itself for each $r \in\left[q, q^{\prime}\right]$ if $\delta>0$ is chosen sufficiently small. The unique fixed point of $\mathcal{F}$ belongs to $W^{2, r}\left(\Omega_{\delta}\right)$ for each $r \in\left[q, q^{\prime}\right]$, and since $v \in W^{2, q}\left(\Omega_{\delta}\right)$ solves (14) and is therefore already a fixed point of $\mathcal{F}$, we conclude $v \in W^{2, q^{\prime}}\left(\Omega_{\delta}\right)$.

Indeed, this yields $u \in W^{2, q^{\prime}}\left(\Omega_{\delta}\right)$ with $q^{\prime}>q$ on the base of $\widetilde{u} \in W^{2, q^{\prime}}\left(\mathcal{N}_{\delta}\right)$ and (9). To arrive at $u \in W^{2, p}\left(\Omega_{\delta}\right)$ it suffices to repeat the above procedure finitely many times with
$q^{\prime}$ instead of $q$ until $q^{\prime}$ becomes equal to $p$. Noting that Lemma 3 remains valid with $\Sigma^{\prime}$ replaced by $\Omega_{\delta}$, we get $u \in W^{2, p}\left(\Sigma^{\prime \prime}\right)$ as Lemma 4 claims.

To derive the bound (8), we note that (9), (17) and $|s(x)| \leq \delta \forall x \in \Omega_{\delta}$ imply

$$
\begin{equation*}
\left\|D^{2} u\right\|_{L^{p}\left(\Omega_{\delta}\right)} \leq\left\|\widetilde{\mathcal{L}}_{2}^{\prime} \widetilde{u}\right\|_{L^{p}\left(\Omega_{\delta}\right)}+C\|v\|_{W^{1, p}\left(\Omega_{\delta}\right)}+C \delta\left\|D^{2} v\right\|_{L^{p}\left(\Omega_{\delta}\right)}, \tag{18}
\end{equation*}
$$

where $C$ is independent of $\delta$ and $\widetilde{\mathcal{L}}_{2}^{\prime}$ is a second-order differential operator over the manifold $\mathcal{N}_{\delta}$ acting on $\tilde{u} \in W^{2, p}\left(\mathcal{N}_{\delta}\right)$.

Set $M:=\|f\|_{\mathcal{F}^{p}(\Omega, \Sigma)}+\|\varphi\|_{\Phi^{p}(\partial \Omega, \Sigma)}+\|\mu\|_{W^{2-1 / p, p}(\mathcal{E})}$ for the sake of simplicity. Passing to $\delta^{-1} \Omega_{\delta}$ and using that $v$ solves the problem (13), a procedure similar to that already employed above gives

$$
\left\|D^{2} v\right\|_{L^{p}\left(\Omega_{\delta}\right)} \leq C^{\prime}(\delta)\left(M+\|\partial u / \partial \boldsymbol{L}\|_{W^{2-1 / p, p}\left(\partial \Omega_{\delta} \cap \Omega\right)}\right)+C\|u\|_{W^{2, p}\left(\Omega_{\delta}\right)},
$$

while

$$
\|\partial u / \partial \boldsymbol{L}\|_{W^{2-1 / p, p}\left(\partial \Omega_{\delta} \cap \Omega\right)} \leq C\|\partial u / \partial \boldsymbol{L}\|_{W^{2, p}\left(\Sigma \backslash \Omega_{\delta}\right)} \leq C^{\prime}(\delta)\left(M+\|u\|_{L^{p}(\Omega)}\right)
$$

by (6), whence

$$
\begin{equation*}
\left\|D^{2} v\right\|_{L^{p}\left(\Omega_{\delta}\right)} \leq C^{\prime}(\delta)\left(M+\|u\|_{W^{1, p}\left(\Omega_{\delta}\right)}\right)+C\left\|D^{2} u\right\|_{L^{p}\left(\Omega_{\delta}\right)} . \tag{19}
\end{equation*}
$$

Further on, extending $\widetilde{\mathcal{L}}_{2}^{\prime} \widetilde{u}$ as constant in $\Omega_{\delta}$ along the $\boldsymbol{L}$-trajectories through the points of $\mathcal{N}_{\delta}$, and using $|s(x)| \leq \delta$ for each $x \in \Omega_{\delta}$, we get

$$
\begin{align*}
\left\|\widetilde{\mathcal{L}}_{2}^{\prime} \widetilde{u}\right\|_{L^{p}\left(\Omega_{\delta}\right)} & \leq C \delta^{1 / p}\left\|\widetilde{\mathcal{L}}_{2}^{\prime} \widetilde{u}\right\|_{L^{p}\left(\mathcal{N}_{\delta}\right)} \leq C \delta^{1 / p}\|\widetilde{u}\|_{W^{2, p}\left(\mathcal{N}_{\delta}\right)} \\
& \leq C^{\prime}(\delta)\left(M+\|u\|_{W^{2-1 / p, p}\left(\mathcal{E}_{\delta}\right)}\right)+C \delta^{1 / p}\left\|\widetilde{F}^{\prime}\right\|_{L^{p}\left(\mathcal{N}_{\delta}\right)} \\
& \leq C^{\prime}(\delta)\left(M+\|u\|_{L^{p}(\Omega)}\right)+C \delta^{1 / p}\left\|\widetilde{F}^{\prime}\right\|_{L^{p}\left(\mathcal{N}_{\delta}\right)} \tag{20}
\end{align*}
$$

as consequence of the $L^{p}$-estimates for the problem (10) and Lemma 3.
Turning to the local coordinate system centered at $x_{0} \in \mathcal{N}_{\delta}$ (see (10) and (11)) in which $\partial / \partial \boldsymbol{L} \equiv \partial / \partial x_{n}$, we define the function

$$
F^{\prime}\left(x^{\prime}, x_{n}\right):=f\left(x^{\prime}, x_{n}\right)-\sum_{i=1}^{n} a^{i n}\left(x^{\prime}, x_{n}\right) D_{i} v\left(x^{\prime}, x_{n}\right)-b^{n}\left(x^{\prime}, x_{n}\right) v\left(x^{\prime}, x_{n}\right)
$$

It is clear that the trace of $F^{\prime}\left(x^{\prime}, x_{n}\right)$ on $\mathcal{N}_{\delta}$ along the $\boldsymbol{L}$-trajectories is exactly $\widetilde{F}^{\prime}$ given by (11) and [12, Equation (2.9)] gives

$$
\delta^{1 / p}\left\|\widetilde{F}^{\prime}\right\|_{L^{p}\left(\mathcal{N}_{\delta}\right)} \leq C\left(\left\|F^{\prime}\right\|_{L^{p}\left(\Omega_{\delta}\right)}+\delta\left\|\partial F^{\prime} / \partial \boldsymbol{L}\right\|_{L^{p}\left(\Omega_{\delta}\right)}\right)
$$

This way (20) becomes

$$
\begin{align*}
\left\|\widetilde{\mathcal{L}}_{2}^{\prime} \widetilde{u}\right\|_{L^{p}\left(\Omega_{\delta}\right)} & \leq C^{\prime}(\delta)\left(M+\|u\|_{W^{1, p}\left(\Omega_{\delta}\right)}+\|v\|_{W^{1, p}\left(\Omega_{\delta}\right)}\right)+C \delta\left\|D^{2} v\right\|_{L^{p}\left(\Omega_{\delta}\right)} \\
& \leq C^{\prime}(\delta)\left(M+\|u\|_{W^{1, p}\left(\Omega_{\delta}\right)}+\|v\|_{W^{1, p}\left(\Omega_{\delta}\right)}\right)+C \delta\left\|D^{2} u\right\|_{L^{p}\left(\Omega_{\delta}\right)} . \tag{21}
\end{align*}
$$

It follows from (19) and (21) that (18) takes on the form

$$
\left\|D^{2} u\right\|_{L^{p}\left(\Omega_{\delta}\right)} \leq C^{\prime}(\delta)\left(M+\|u\|_{W^{1, p}\left(\Omega_{\delta}\right)}+\|v\|_{W^{1, p}\left(\Omega_{\delta}\right)}\right)+C \delta\left\|D^{2} u\right\|_{L^{p}\left(\Omega_{\delta}\right)}
$$

with $C$ independent of $\delta$. Fixing $\delta>0$ small enough, we get into

$$
\begin{equation*}
\|u\|_{W^{2, p}\left(\Omega_{\delta}\right)} \leq C\left(M+\|u\|_{W^{1, p}\left(\Omega_{\delta}\right)}+\|v\|_{W^{1, p}\left(\Omega_{\delta}\right)}\right) . \tag{22}
\end{equation*}
$$

The estimate (8) follows from (22) by interpolation. In fact, since $\delta$ is small we may suppose $\Omega_{\delta} \subset \Sigma^{\prime} \subset \Sigma^{\prime \prime}$ and

$$
\begin{align*}
\|u\|_{W^{2, p}\left(\Sigma^{\prime \prime}\right)} & \leq\|u\|_{W^{2, p}\left(\Omega_{\delta}\right)}+\|u\|_{W^{2, p}\left(\Omega \backslash \Omega_{\delta}\right)} \\
& \leq C\left(M+\|u\|_{L^{p}(\Omega)}+\|u\|_{W^{1, p}\left(\Omega_{\delta}\right)}+\|v\|_{W^{1, p}\left(\Omega_{\delta}\right)}\right) \\
& \leq C\left(M+\|u\|_{L^{p}(\Omega)}+\|u\|_{W^{1, p}\left(\Sigma^{\prime \prime}\right)}+\|v\|_{W^{1, p}\left(\Sigma^{\prime}\right)}\right) \tag{23}
\end{align*}
$$

by virtue of (22) and Lemma 3 applied to the term $\|u\|_{W^{2, p}\left(\Omega \backslash \Omega_{\delta}\right)}$ with $\Omega_{\delta}$ instead of $\Sigma^{\prime}$. On the other hand, assuming some minimal smoothness of $\partial \Sigma^{\prime}$ and $\partial \Sigma^{\prime \prime}$, the interpolation inequality implies

$$
\|v\|_{W^{1, p}\left(\Sigma^{\prime}\right)} \leq \varepsilon\|v\|_{W^{2, p}\left(\Sigma^{\prime}\right)}+C(\varepsilon)\|v\|_{L^{p}\left(\Sigma^{\prime}\right)}, \quad \forall \varepsilon>0,
$$

while

$$
\|v\|_{W^{2, p}\left(\Sigma^{\prime}\right)} \leq C\left(M+\|u\|_{L^{p}(\Omega)}+\|u\|_{W^{2, p}\left(\Sigma^{\prime \prime}\right)}\right)
$$

in view of (6). This way, (23) becomes

$$
\|u\|_{W^{2, p}\left(\Sigma^{\prime \prime}\right)} \leq \varepsilon\|u\|_{W^{2, p}\left(\Sigma^{\prime \prime}\right)}+C(\varepsilon)\left(M+\|u\|_{L^{p}(\Omega)}+\|u\|_{W^{1, p}\left(\Sigma^{\prime \prime}\right)}\right),
$$

which reads

$$
\|u\|_{W^{2, p}\left(\Sigma^{\prime \prime}\right)} \leq C\left(M+\|u\|_{L^{p}(\Omega)}+\|u\|_{W^{1, p}\left(\Sigma^{\prime \prime}\right)}\right)
$$

after choosing $\varepsilon$ small enough. To get the estimate (8), it remains to apply once again the interpolation inequality to the term $\|u\|_{W^{1, p}\left(\Sigma^{\prime \prime}\right)}$. This completes the proof of Lemma 4.

## 4 Concluding remarks

We will briefly sketch here some important consequences of the improving-of-integrability property and the a priori estimate (8) as stated in Theorem 1. The interested reader is referred to [12] for the proofs, while [14] provides for generalizations to the case of tangency set $\mathcal{E}$ which is no anymore a codimension one submanifold of $\partial \Omega$, but may have positive surface measure.

## Maximum principle and uniqueness in $W^{2, p}(\Omega)$ for each $p>1$.

Lemma 5 Assume (1)-(3), $c(x) \leq 0$ a.e. $\Omega$ and let $u \in W_{\text {loc }}^{2, n}(\Omega) \cap C^{1}(\bar{\Omega})$ satisfy

$$
\begin{cases}a^{i j}(x) D_{i j} u+b^{i}(x) D_{i} u+c(x) u \geq 0 & \text { a.e. } \Omega, \\ \partial u / \partial \ell \leq 0 \text { on } \partial \Omega^{+}, \quad \partial u / \partial \ell \geq 0 \quad \text { on } \partial \Omega^{-}, \quad u \leq 0 \quad \text { on } \mathcal{E} .\end{cases}
$$

Then $u(x) \leq 0$ on $\bar{\Omega}$.
The unicity of the $W^{2, p}(\Omega)$-solutions to $(\mathcal{M P})$ for each $p>1$ is a direct consequence of the maximum principle and the improving-of-summability property.

Corollary 6 Assume (1)-(3) and $c(x) \leq 0$ a.e. $\Omega$. Let $u, v \in W^{2, p}(\Omega)$ be two solutions to $(\mathcal{M P})$ with $p>1$. Then $u \equiv v$ in $\bar{\Omega}$.

Refined A Priori Estimate and Unique Solvability in $W^{2, p}(\Omega)$ for each $p>1$ when $\boldsymbol{c}(\boldsymbol{x}) \leq \mathbf{0}$ a.e. $\boldsymbol{\Omega}$. In case the coefficient $c(x)$ of $\mathcal{L}$ is non-positive, the bound (8) could be considerably refined by dropping out $\|u\|_{L^{p}(\Omega)}$ from the right-hand side.

Lemma 7 Assume (1)-(3) and $c(x) \leq 0$ a.e. $\Omega$. Let $u \in W^{2, p}(\Omega), p>1$, be a strong solution to $(\mathcal{M P})$ with $f \in \mathcal{F}^{p}(\Omega, \Sigma), \varphi \in \Phi^{p}(\partial \Omega, \Sigma)$ and $\mu \in W^{2-1 / p, p}(\mathcal{E})$.

Then there exists a constant $C$, depending on known quantities only, such that

$$
\begin{equation*}
\|u\|_{W^{2, p}(\Omega)} \leq C\left(\|f\|_{\mathcal{F}^{p}(\Omega, \Sigma)}+\|\varphi\|_{\Phi^{p}(\partial \Omega, \Sigma)}+\|\mu\|_{W^{2-1 / p, p}(\mathcal{E})}\right) . \tag{24}
\end{equation*}
$$

The a priori estimate (24) yields strong solvability of the Poincaré problem $(\mathcal{M P})$ in $W^{2, p}(\Omega)$ for arbitrary $p>1$ whenever the uniqueness hypotheses of Corollary 6 hold. In fact, approximating $(\mathcal{M P})$ by problems with $C^{\infty}$-smooth data and using the existence results from [3,4] or [22], (24) ${ }^{1}$ gives

Theorem 8 Assume (1)-(3) and $c(x) \leq 0$ a.e. $\Omega$. Then, for each $p>1$ the Poincaré problem $(\mathcal{M P})$ is uniquely solvable in $W^{2, p}(\Omega)$ for arbitrary $f \in \mathcal{F}^{p}(\Omega, \Sigma), \varphi \in \Phi^{p}(\partial \Omega, \Sigma)$ and $\mu \in W^{2-1 / p, p}(\mathcal{E})$.
$(\mathcal{M P})$ is a problem of Fredholm type with index zero. Let $p>1$ be arbitrary and set $\mathcal{W}^{2, p}(\Omega, \Sigma)$ for the Banach space of functions $u \in W^{2, p}(\Omega)$ such that $\partial u / \partial \boldsymbol{L} \in W^{2, p}(\Sigma)$ and normed by $\|u\|_{\mathcal{W}^{2, p}(\Omega, \Sigma)}:=\|u\|_{W^{2, p}(\Omega)}+\|\partial u / \partial L\|_{W^{2, p}(\Sigma)}$. Define the kernel and the range of ( $\mathcal{M P}$ ) by

$$
\begin{aligned}
& \mathcal{K}_{p}:=\left\{u \in \mathcal{W}^{2, p}(\Omega, \Sigma): \quad \mathcal{L} u=0 \text { a.e. } \Omega, \quad \partial u / \partial \ell=0 \text { on } \partial \Omega, \quad u=0 \text { on } \mathcal{E}\right\}, \\
& \mathcal{R}_{p}:=\mathcal{F}^{p}(\Omega, \Sigma) \times \Phi^{p}(\partial \Omega, \Sigma) \times W^{2-1 / p, p}(\mathcal{E}) .
\end{aligned}
$$

Theorem 9 Under the hypotheses (1)-(3), for any $p \in(1, \infty)$ there exists a closed subspace $\widetilde{\mathcal{R}}_{p}$ of finite codimension in $\mathcal{R}_{p}$ such that for arbitrary $(f, \varphi, \mu) \in \widetilde{\mathcal{R}}_{p}$ the modified Poincaré problem $(\mathcal{M P})$ has a solution $u \in \mathcal{W}^{2, p}(\Omega)$. Moreover, $\operatorname{dim} \mathcal{K}_{p}=\operatorname{codim}_{\mathcal{R}_{p}} \widetilde{\mathcal{R}}_{p}$ and if, in particular, $c(x) \leq 0$ a.e. $\Omega$, then $\mathcal{K}_{p}=\{0\}, \widetilde{\mathcal{R}}_{p} \equiv \mathcal{R}_{p}$ and $(\mathcal{M P})$ is uniquely solvable for arbitrary $(f, \varphi, \mu) \in \mathcal{R}_{p}$.

In terms of the Poincaré problem ( $\mathcal{M P}$ ), Theorem 9 sounds like
Corollary 10 Suppose (1)-(3) and let $p>1$ be any number. Then, either
(A) the homogeneous problem

$$
\mathcal{L} u=0 \quad \text { a.e. } \Omega, \quad \mathcal{B} u=0 \quad \text { on } \partial \Omega, \quad u=0 \quad \text { on } \mathcal{E}
$$

has only the trivial solution and then the non-homogeneous problem ( $\mathcal{M P )}$ is uniquely solvable in $W^{2, p}(\Omega)$ for arbitrary $(f, \varphi, \mu) \in \mathcal{F}^{p}(\Omega, \Sigma) \times \Phi^{p}(\partial \Omega, \Sigma) \times W^{2-1 / p, p}(\mathcal{E})$; or
(B) the homogeneous problem admits non-trivial solutions which span a subspace of $W^{2, p}(\Omega)$ of finite dimension $k>0$. Then the non-homogeneous problem $(\mathcal{M P})$ is solvable only for those $(f, \varphi, \mu) \in \mathcal{F}^{p}(\Omega, \Sigma) \times \Phi^{p}(\partial \Omega, \Sigma) \times W^{2-1 / p, p}(\mathcal{E})$ which satisfy $k$ complementary conditions.

## References

1. Egorov, Y.V., Kondrat'ev, V.: The oblique derivative problem. Math. USSR Sbornik 7, 139-169 (1969)
2. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. 2nd edn. Springer, Berlin, Heidelberg, New York (1983)

[^1]3. Guan, P., Sawyer, E.: Regularity estimates for the oblique derivative problem. Ann. Math. 137, 170 (1993)
4. Guan, P., Sawyer, E.: Regularity estimates for the oblique derivative problem on non-smooth domains I. Chin. Ann. Math., Ser. B 16, 1-26 (1995); II, ibid. 17, 1-34 (1996)
5. Hörmander, L.: Pseudodifferential operators and non-elliptic boundary value problems. Ann. Math. 83, 129-209 (1966)
6. Kufner, A., John, O., Fučík, S.: Function Spaces. Noordhoff, Leyden (1977)
7. Maugeri, A., Palagachev, D.K., Softova, L.G.: Elliptic and Parabolic Equations with Discontinuous Coefficients. Math. Res., vol. 109. Wiley-VCH, Berlin (2000)
8. Maz'ya, V.: On a degenerating problem with directional derivative. Math. USSR Sbornik 16, 429469 (1972)
9. Maz'ya, V., Paneah, B.P.: Degenerate elliptic pseudodifferential operators and oblique derivative problem. Trans. Moscow Math. Soc. 31, 247-305 (1974)
10. Melin, A., Sjöstrand, J.: Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem. Commun. Partial Differ. Equations 1, 313-400 (1976)
11. Palagachev, D.K.: The tangential oblique derivative problem for second order quasilinear parabolic operators. Commun. Partial Differ. Equations 17, 867-903 (1992)
12. Palagachev, D.K.: The Poincaré problem in $L^{p}$-Sobolev spaces I: codimension one degeneracy. J. Funct. Anal. 229, 121-142 (2005)
13. Palagachev, D.K.: Neutral Poincaré Problem in $L^{p}$-Sobolev Spaces: regularity and fredholmness. Int. Math. Res. Notices 2006, Article ID 87540, p. 31 (2006)
14. Palagachev, D.K.: The Poincaré problem in $L^{p}$-Sobolev spaces II: full dimension degeneracy. Commun. Partial Differ. Equations (2007) (to appear)
15. Paneah, B.P.: On a problem with oblique derivative. Soviet Math. Dokl. 19, 1568-1572 (1978)
16. Paneah, B.P.: The Oblique Derivative Problem. The Poincaré Problem, Math. Topics, vol. 17. WileyVCH, Berlin (2000)
17. Poincaré, H.: Lecons de Méchanique Céleste, Tome III, Théorie de Marées. Gauthiers-Villars, Paris (1910)
18. Popivanov, P.R., Kutev, N.D.: The tangential oblique derivative problem for nonlinear elliptic equations. Commun. Partial Differ. Equations 14, 413-428 (1989)
19. Popivanov, P.R., Kutev, N.D.: Viscosity solutions to the degenerate oblique derivative problem for fully nonlinear elliptic equations. Math. Nachr. 278, 888-903 (2005)
20. Popivanov, P.R., Palagachev, D.K.: The Degenerate Oblique Derivative Problem for Elliptic and Parabolic Equations. Math. Res., vol. 93. Akademie-Verlag, Berlin (1997)
21. Winzell, B.: The oblique derivative problem I. Math. Ann. 229, 267-278 (1977)
22. Winzell, B.: A boundary value problem with an oblique derivative. Commun. Partial Differ. Equations 6, 305-328 (1981)


[^0]:    D. K. Palagachev ( $\boxtimes$ )

    Dipartimento di Matematica, Politecnico di Bari,
    Via E. Orabona, 4, 70125 Bari,
    Italy
    e-mail: dian@dm.uniba.it; palaga@poliba.it

[^1]:    ${ }^{1}$ We refer the reader to [12] for a direct approach to the existence problem for $(\mathcal{M P})$.

