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Abstract We derive W2P(Q)-a priori estimates with arbitrary p € (1, 00), for the
solutions of a degenerate oblique derivative problem for linear uniformly elliptic opera-
tors with low regular coefficients. The boundary operator is given in terms of directional
derivative with respect to a vector field £ that is tangent to 92 at the points of a non-empty
set £ C 02 and is of emergent type on 0S2.
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1 Introduction

The article deals with regularity in the Sobolev spaces W22 (), V p € (1, 00), of the strong
solutions to the oblique derivative problem

Lu = a'l (x)Djju + b'(x)Dju+c(x)u = f(x) ae. Q,

(P)
Bu := du/0€ = p(x) on 9€2,

where L is a uniformly elliptic operator with low regular coefficients and B is prescribed in
terms of a directional derivative with respect to the unit vector field £(x) = ), ..., 0" %)
defined on <2, n > 3. Precisely, we are interested in the Poincaré problem (P) (cf. [16,17,
20]), that is, a situation when £(x) becomes tangential to <2 at the points of a non-empty
subset £ of 9€2.
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From a mathematical point of view, (P) is not an elliptic boundary value problem. In
fact, it follows from the general PDEs theory that (P) is a regular (elliptic) problem if and
only if the Shapiro—Lopatinskij complementary condition is satisfied which means £ must
be transversal to 02 when n > 3 and |[£| # 0 as n = 2. If £ is tangent to 0S2 then (P) is
a degenerate problem and new effects occur in contrast to the regular case. The qualitative
properties of () depend on the behaviour of £ near the set of tangency £ and especially on
the way the normal component y v of £ changes or no its sign (with respect to the outward
normal v to d€2) on the trajectories of £ when these cross £. The main results were obtained by
Hormander [5], Egorov and Kondrat’ev [1], Maz’ya [8], Maz’ya and Paneah [9], Melin and
Sjostrand [10], Paneah [15] and good surveys and details can be found in Popivanov and Pal-
agachev [20] and Paneah [16]. The problem () has been studied in the framework of Sobolev
spaces H*(=H*?) assuming C*-smooth data and this naturally involved techniques from
the pseudo-differential calculus.

The simplest case arises when y := £ - v, even if zero on &, conserves the sign on 92
(Fig. 1). Then & and £ are of neutral type (a terminology coming from the physical interpre-
tation of (P) in the theory of Brownian motion, cf. [20]) and (P) is a problem of Fredholm
type [1]. Assume now that y changes the sign from “—""to “+” in positive direction along the
£-integral curves through the points of £. Then £ is of emergent type and £ is called attracting
manifold. The new effect occurring now is that the kernel of (P) is infinite-dimensional [5]
and to get a well-posed problem one has to modify (P) by prescribing the values of # on £
(cf. [1]). Finally, suppose the sign of y changes from “+” to “—” along the £-trajectories.
Now £ is of submergent type and £ corresponds to a repellent manifold. The problem (P)
has infinite-dimensional cokernel [5] and Maz’ya and Paneah [9] were the first to propose
a relevant modification of (7) by violating the boundary condition at the points of £. As
result, a Fredholm problem arises, but the restriction u|yq has a finite jump at £. What is
the common feature of the degenerate problems, independently of the type of £, is that the
solution “loses regularity” near the set of tangency from the data of (P) in contrast to the
non-degenerate case when each solution gains two derivatives from f and one derivative
from ¢. Roughly speaking, that loss of smoothness depends on the order of contact between
£ and 9€2 and is given by the subelliptic estimates obtained for the solutions of degenerate
problems (cf. [3-5,9]). Precisely, if € has a contact of order k with 92 then the solution of
(P) gains 2 — k/(k + 1) derivatives from f and 1 — k/(k + 1) derivatives from ¢.

For what concerns the geometric structure of £, it was supposed initially to be a subman-
ifold of 92 of codimension one. Melin and Sjostrand [10] and Paneah [15] were the first
to study the Poincaré problem (P) in a more general situation when £ is a massive subset
of 92 with positive surface measure, allowing £ to contain arcs of £-trajectories of finite
length. These results were extended to Holder’s spaces by Winzell [21,22] who studied (P)
assuming C"*-smoothness of the coefficients of £.

When dealing with non-linear Poincaré problems, however, we have to dispose of precise
information on the linear problem (P) with coefficients less regular than C* (see [11,18—
201). Indeed, a priori estimates in W27 for solutions to (P) would imply easily pointwise
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Fig. 1 Neutral (a), Emergent (b) and Submergent (¢) vector field £
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estimates for # and Du for suitable values of p > 1 through the Sobolev imbeddings. This
way, we are naturally led to consider (P) in a strong sense, that is, to searching for solutions
from W2 P which satisfy Lu = f almost everywhere (a.e.) in Q2 and Bu = ¢ holds in the
sense of trace on 9€2.

In the papers [3,4] by Guan and Sawyer solvability and fine subelliptic estimates have
been obtained for (P) in H*?-spaces (=W*? for integer s!). However [3], treats operators
with C*°-coefficients and this determines the technique involved and the results obtained,
while in [4] the coefficients are C0%%_smooth, but the field € is of finite type, that is, it has a
finite order of contact with 9<2.

The main goal of the article is to derive a priori estimates in Sobolev’s classes W27 (2)
withany p € (1, co) for the solutions to the Poincaré problem (), weakening both Winzell’s
assumptions on C%-regularity of the coefficients of £ and these of Guan and Sawyer on
the finite type of £. We deal with the case of emergent type vector field £ and, for the sake
of simplicity, we suppose that £ is a submanifold of 92 of codimension one. As already
mentioned, the kernel of (P) is infinite dimensional and in order to get a well-posed problem
we have to prescribe Dirichlet boundary condition on £. Thus, we consider the modified
Poincaré problem

Lu = f(x) ae.Q,
Bu=¢(x) ondQ2, u=pux) oné& (MP)
instead of (). Indeed, the loss of smoothness mentioned, imposes some more regularity of
the data near the set £. We assume that the coefficients of £ are Lipschitz continuous near £
while only continuity (and even discontinuity controlled in VM O) is allowed away from &.
Similarly, £ is a Lipschitz vector field on d€2 with Lipschitz continuous first derivatives near
&, and no restrictions on the order of contact with 92 are imposed.

Our main result is the a priori estimate from Theorem 1 for each W2:P (2)-solution to
(MP) with arbitrary p € (1, 00). The background of our approach lies in the fact that du /94
is a strong solution to a Dirichlet-type problem near £ with right-hand side depending on
the solution u itself. Precisely, let A/ be the manifold formed by the inward normals to 92
starting from £ and suppose £ is appropriately extended in €2. Thanks to the emergent type
of £, any point x near A/ could be reached from a unique x’ € A/ through an £-trajectory and
integration of du /3¢ along it expresses u(x) in terms of u(x’) and integral of du /3£ over the
arc connecting x’ and x. The supplementary condition u|s = p provides for a W2 (N)-
estimate for the restriction u| s which solves a uniformly elliptic Dirichlet problem over the
manifold A. Since du /94 is a local solution of a Dirichlet-type problem, the L?-theory of
such problems gives a bound for the W>?-norm of du/d€ in terms of the same norm of
u. This way, a dynamical systems approach based on integration of these norms along the
{-trajectories through A/, leads to an estimate for the W?2P-norm of u near N, ||ul| W2.p,
in terms of known quantities plus C|u||y2.», where the multiplier C is small when the
arclengths of the £-trajectories joining x with x’ are small. Indeed, that procedure gives an
a priori bound for ||u||y2.» in a neighbourhood of £. Away from &, (MP) is a regular oblique
derivative problem and the W27 (£2)-a priori estimate follows from [7]. Another advantage
of this approach is the improving-of-integrability property of the problem (MP). Loosely
speaking, it means that, even if (MP) is a degenerate problem and therefore the solution
loses derivatives from the data f and g, it behaves as an elliptic problem for what concerns
the degree p of integrability. That is, if u € W29 () is a solution to (MP) with f € LP ()
and 9f/0€ € LP near £, 9 € W'=V/P-P(3Q) and ¢ € W2 VPP near €, u € W21/P-P(&)
where p € [g, 00), thenu € Wz'p(SZ).
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Concluding this introduction, we refer the reader to the articles [12, 13, 14], where various
outgrowths of the W27 (2)-a priori estimate and the improving-of-integrability property are
derived for the Poincaré problem (M7), such as maximum principle, uniqueness in W27 (2)
for all p > 1, strong solvability when c(x) < 0 a.e. 2, and it is proven that (MP), even if
a degenerate oblique derivative problem, is one of Fredholm type with index zero.

2 Improving of summability and W2-?-a priori estimate

We are given a bounded domain 2 C R",n > 3, with reasonably smooth boundary for
which v(x) = (vl(x), R Vi (x)) is the unit outward normal at the point x € 9€2. Let
L(x) = (Kl(x), oLt (x)) be a unit vector field defined on 92 and decompose it into
a sum of tangential and normal components, £(x) = 7(x) + y(x)v(x) at each x € 9€2.
Here 7(x), t: 02 — R", is the projection of £(x) on the tangent hyperplane to 92 at
the point x € 92 (see Fig. 2), while y:0€2 — R stands for the Euclidean inner product
y(x) ;= £(x) - v(x). Indeed, the set of zeroes of the function y (x),

&= {x €02 y(x) =0}

is the subset of the boundary where the field £(x) becomes tangent to it.
Set further dQ* for the relatively open sets (see Fig. 2)

It ={x cd: y(x) >0}, IR :={x€d: yx) <0}

sothat £ is the common boundary of QT and 9Q~, dQ = IQT UIQ™ U € andcodim o =
1. It is clear that 3Q is the set of all boundary points x where the field £(x) points out-
wards 2, whereas it is pointed inward 2 on 02~ . Regarding £, we will suppose £ is strictly
transversal to it and directed from 32~ into Q2.

The standard summation convention on repeated indices is adopted throughout and D; :=
0/0x;, Djj = 92 /0x;0x ;. The class of functions with Lipschitz continuous kth order deriv-
atives is denoted by CK!, W7 stands for the Sobolev space of functions with L?-summable
weak derivatives up to order k € N and normed by || - || ., , while W57 (0€2) withs > 0 non-
integer, p € (1, +00), is the fractional-order Sobolev space. The Sarason class of functions

Fig. 2 The structure of the
vector field £
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with vanishing mean oscillation is denoted by VMO(£2). We use the standard parameter-
ization t +— VY (¢, x) for the trajectory (phase curve and maximal integral curve) of a
given vector field L passing through the point x, that is, 3; % (r,x) = L o ¥ (¢, x) and
¥r0,x)=x. o -

Fix hereafter ¥ C Q2 to be a closed neighbourhood of £ in € and assume:

e uniform ellipticity of the operator L: there exists a constant A > 0 such that
2UER ¥ 0&E < 5P, V() =d/'(0) aaxeQ V&R, (D)
e regularity of the data:

al e VMO NCO(Z)=VMO©Q) NWhox),
b, ce L®(Q)NCO(T) = L®Q) nWhe(m), )
fect@onctleany); aQech!, Nz ec?!;

e emergent type of the vector field £:

£ is a C%!-smooth submanifold of 92 of codimension one and £(x)
is strictly transversal to £, pointing from Q™ intodQTV x € £.

3)

We will employ an extension of the field £ near 92 which preserves therein its regular-
ity and geometric properties. For each x € € and close enough to Q2 define I' := {x €
Q:dist (x, 0R2) < dp} withdp > 0 sufficiently small. Thus, to each x € I" there corresponds a
unique y(x) € 92 closest to x, y(x) € C%!(I") while y(x) € C11(I'ND) (cf. [2, Chap. 14]).
We set

L(x):=4£(y(x)), t(x):=1(y(x)) Vxel, N:i={xel: yx)eé&}.

It is clear from (2) and (3) that L, T € C%'(T) N C"!(I' N £) and |t|x| = 1 in view of
t|n = Lx = £|¢. Moreover, AV is a C!*!-smooth manifold of dimension (n — 1) and the
vector field L is strictly transversal to it.

In order to state our main results, we need to introduce special functional spaces which
take into account the higher regularity near £ of the data of (MP). For any p € (1, 00)
define the Banach spaces

FP(Q, %) :={f € LP(Q): df/IL € L' (%)}
equipped with the norm || f || 7r(@, 3y = I fllLr(@) + 10f/dL] Lr(s), and
PO, T) = {p e WVPP@OQ): 9 e WTVPP@QN )}

normed by |l¢pllore.x) = lelwi-1rroe) + lelwe-vrroans)-

In the sequel the letter C will denote positive constants depending on the data of (MP),
that is, on n, p, A, the respective norms of the coefficients of £ and B in  and X, the
regularity of 92 and the lower bound for the angle between £ and € [see (3)].

Our main result asserts that the couple (£, B) improves the integrability of solutions to
(MP) for any p € (1, oo) and provides for an a priori estimate in the L?-Sobolev scales for
any such solution.

Theorem 1 Suppose (1)~(3) and let u € W>4(S2) be a strong solution to (MP) with f €
FP(Q, %), ¢ € ®P(OQ, T) and u € W*1PP(E) where p € [q, 00).
Then u € WP (Q) and there is a constant C such that

lullwzr@) < C (lullr@ + 1 fllFr@.5) + l@loree.s) + lnllwe-vore) - @)
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Some remarks follow which regard the behaviour of du/d L in a neighbourhood of the tan-
gency set € and traces of functions on (n — 1)-dimensional manifolds.

Remark 2 (1) The directional derivative du/dL of any W2 P_solution to (MP) is a WP
(X)-function. In fact,u € WP gives du/dL € W'7(X) and taking the difference quotients
in L-direction of the equation in (M), we get du/dL € WP (%) in view of the regularity
theory of uniformly elliptic equations (e.g. [2, Lemma 7.24,Chap. 8]). Moreover, du/dL is
a solution to the Dirichlet problem

L(@®u/dL) = df/dL + 2a" D; L* Dy;u + (@ D;; L* + b' D; L¥) Dyu
—(da" JOL)Djju — (3b' /dL)Diu — (dc/dL)u  ae. X, 5)
ou/oL =¢ ondQ2NXE,

where L(x) = (L'(x), ..., L"(x)) is the C*!(I") n C"!(I" N X)-extension of £. Therefore,
once having u € W>?() and the estimate (4), the LP-theory of the uniformly elliptic
equations (cf. Chap. 9 in [2]) gives

0u/dL|lw2pe5) < C (I18u/dL | Lo(s) + 1f/IL ] Lr(z) + llullwzr(x)
+||§0||W2*l/p<p(as2m2))
< C'(lullr@ + 1 fllFr@.5) + l@loree.s) + liellwe-1eee) 6)

for each closed neighbourhood S of £in Q, ¥ C 3, where the constant C’ depends on
dist (2, Q\ ¥) in addition. In other words, if a strong solution u to (M7P) belongs to W27 (2)
then automatically du/0L € W2P(%) provided f € FP(Q2,%) and ¢ € PP(9L2, X).
Moreover, it will be evident from (5) and the proofs given below, that instead of the Lipschitz
continuity of the coefficients of £ in X as (2) asks, it suffices to have essentially bounded
their L-directional derivatives.

2) Letu € Lfoc (R™), p > 1, and let /' be the (n — 1)-dimensional manifold of the
inward normals through the points of £ constructed above, which can be represented locally
as N ={x e R": x, = &), x' € @ c R !} with & € CH1(O). Then the trace
u|nr is not well-defined because N has zero n-dimensional Lebesgue measure. However, if

u e Wll(;g (R™) then u|ar exists and belongs to the fractional Sobolev space Wllo_cl/ PPN,

We are interested here on the intermediate situation when u, du/dx, € Llp oc (R™). Then,
redefining if necessary u on a set of zero measure, u(x’, x,) is absolutely continuous func-

tion in x,, for a.a. x" and therefore du/dx, (x’, x,) is a.e. classical derivative. This way, we
define the trace u(x’, ®(x")) := u|xr by the formula

~ ! n 8“ ’ !/ /
u(x', o(x")) =uix’, x,) — / — (', 5)ds  aa (X, Px)) e N. @)
Jaon 0xn

2

It follows from Fubini’s theorem that & € Lf oc V). Moreover, having u € W, 7 (R™) with

oc

du/dx, € Wli’cp (R™) then u € Wli’cp (H) and the trace operator u +— I is compact one con-

sidered as mapping from le(;g (R™) into Wlé’cp (N) (see [6]). That procedure applies to the
more general situation in presence of the unit vector field L which is transversal to A/. Thus,
straightening L in a neighbourhood of an arbitrary point of A/ such that 3/dL = 9/9x,, N
could be represented locally as a graph of a function ® € C!!, after that (7) applies. We will
refer in the sequel to that procedure as faking trace on N” along the L-trajectories through
the points of N.
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These observations explain the assumption u € W2~1/7-7(£) in Theorem 1. In fact, sup-
poseu € W22 () is asolution of (MP). Thenu|sq € W2~1/P-P(3Q) and taking once again
trace on the (n — 2)-dimensional submanifold £ of 32 would give (#]30)|s € w2=2/p-p &).
However, as it follows from (5) and (6), the higher-order regularity assumptions on the data
near £ ensure du /0L € w21/r.r(x N 9Q) and since £ is strictly transversal to £ by (3), we
have really u|g € W2~1/PP(€).

3 Proof of the main result

The statement of Theorem 1 will follow by the corresponding results away (Lemma 3) and
near (Lemma 4) the set of tangency £. Fix hereafter ¥’ C X" C X to be closed neighbour-
hoods of £ in €.

Lemma 3 Suppose (1), (2) and let u € W24(Q) be a strong solution to (MP) with [ €
LP(Q) and ¢ € WI=1/P-P(3Q) where p € [g, 00).
Thenu € W>P(Q2\ ') and there is an absolute constant C such that

lullwzr@sy < C (lullir@ + I1f e + 1@lwi-urrpa)) -

Proof The problem (MP) is a regular oblique derivative problem out of ¥’, with a field £
strictly transversal to dQ and pointing into © on 427\ X’ and out of  on QT\X'. The
claims follow from or Theorem 2.3.1 of [7]. ]

Lemma 4 Assume (1)-(3) and let u € W29(Q) be a strong solution to (MP) with [ €
FP(Q, %), ¢ € PR, X) and ;. € Wr1/P-P(E) where p € [q, o0).
Thenu € W>P(2") and

lullw2rsny < C (lullir@ + 1 flzr@.s) + lelloree.s) + ltllweimee) - ()

Proof Turning back to the neighbourhood I' of 92 and the extension of £, we recall 7|y =
L|x and ’r| /\/| = 1. Therefore, there exists a closed neighbourhood U of N/,

U=={xexnl: [t)|=1/2}

and setting 7/(x) := T(x)/|t(x)|Vx € U, we get the unir vector field =’ coinciding with
T on N. The strict transversality of 7’ to A/ assures that any point X € U can be reached
from a unique X’ € N along a trajectory of 7’ in the positive/negative direction. Setting ¢ —
¥,/ (t, ) for the integral curve of T/ through X, we have x = ¥ ./ (&, x),x' e N,& € Rand
sign (§) = sign (y (y(x))) (see Fig. 3b). Introduce new coordinates (&, 1, ) € R xR x R"2
in U as follows. For any X € U we set £(x) € R to be the length (with sign) of the t’-
trajectory connecting X with the unique X’ € N, i.e., X = ¥/ (£§(X), X') and sign (§(X)) =
sign (v (y(x))). Define further n(x) := dist(x’, 9Q) = dist (¥ (—&(X), X), 92). Finally,
{(x) € £is given by ¢(X) := y(VI,/(—é(Y), f)) eé.

Let S,9S8 € C, be the convex domain in the (1, £)-plane as given on Fig. 3a. Set
Qs :={x e U:¢{(x) € &, ((nx),&(x)) € 8-S} fors € (0, 8] with 8y < 1and § - S stand-
ing for the dilation of S of factor 8. Indeed, Q5 C U, 8Qs € C"! and if 8 is small enough
then the field L is tangential to €25 only at the points of £ and these of & := (N NIL)\E =
N N 3dQs N Q and points outwards (inwards) Q5 at x € 9Qs\( U &) when y(x) € QT
(y(x) € 027). We define further

N5 :=NNQs, ONg:=EUE;s.
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the set S a cross-section of the set {25

Fig.3 The dashed curves represent trajectories of the field t’, parameterizedby t — ¥,/ (7,X), X' € N, X =
Yo (EX),X), ¥ =P (EX"), ). The other curves are L-trajectories parameterized by ¢t — ¥ (¢, x) and
x=Yrx), 1), x" =¥, x) withx’ e N.

Each point x € U can be reached from x’ € N through an L-trajectory (see Fig. 3b).
Setting ¢+ — ¥ (¢, x) for its parameterization, for each x € U there exists a unique value
s(x) € CHI(U) of the parameter such that ¥ (—s(x),x) = x’ € N and without loss of
generality we may assume |s(x)| < §Vx € Qs. Now, for any x’ € N define the trace of
f € FP(R2.X) on N along the L-trajectories by

~ s(x) af
Foy = f) — / O oy, xeU.
0 oL

It follows from Remark 2 that f is well-defined on NV and f € LP(N). In the same manner,
u € W>4(2) and the trace #(x") = u(x)|n := u o ¥ (—s(x), x) does exist.
Setting

v(x) == du(x)/0L Vx e Qs

it is obvious that

s(x)
u(x) = u(x) +/ voy(t,x)dt
0
s(x)
:uolpL(—s(x),x)—l—/ vo¥(t—s(x),x)dt, Vx e Q. )
0

To get the improving-of-summability property for u(x) we will derive it for &(x") and v(x),
and we suppose p > ¢g. Consider the action of £ on the functions defined in U which are
constant on almost every L-trajectory through A. This defines a second order operator £’
on the C!-!-smooth manifold A/, which is uniformly elliptic by virtue of (1) and the strict
transversality of L to A. This way, #(x") is a W24 (\)-solution of the following Dirichlet
problem on the manifold N
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noné,

u on &s. (10)

‘L’ﬁ:ﬁ’ a.e. N, E|3N5:{
To get alocal representation for the operator £’ we suppose, without loss of generality, that the
field L is locally straighten in a neighbourhood of a point xg € A such that 3/dL = 9/0x,
and N has the form {x, = 0} near xo. Thus, setting x’ = (x1,...,x,-1) € O C N, we
have v = du /0L = du/dx, and

n—1 n—1
Luy =Y al, 0) D,y i (x") + > h K, 0)Dyii(x") + c(x', 0)E(x)
i,j=1 ' i=1
o~ o~ nil . —_~— —_~—
F'(x') = f(x) —Za’"(x’, 0)(Dxl_/v)(x’) —a"(x, 0)(Dy,v)(x")
i=1
—b"(x", 0)T(x"), (11)

where the “tilde” over a function means its trace value on N taken along the L-trajectories
in the sense of (7). We have f € FP(2, ¥) and therefore f € LP(N) as it follows from
Remark 2 (2). Further, v € W24(X) in view of Remark 2 (1) and thus 7, I)\x/v € L"(N) with
r=(m—1)q/(n—q)if g < n and arbitrary r > 1 when ¢ > n (cf. Theorems 6.4.1 and
6.4.2 of [6]). This means F’ € L4 (Nj) with

. (n—lg ] :
min | p, , ifg < n,

q = 5 I (12)
D, otherwise.

Further on, u € W2~V/P-P (&) and ulg, € W?~1/P-P by Lemma 3. and the LP-theory
(see [2]) yields that the solution & of (10) belongs to W2"1/(/\f5) with ¢’ > gq.

To get increasing of summability for v = du/9d L also, we recall (see (5)) that the function
v is a W24-solution of the Dirichlet problem

Lv = 3f/IL + 2a" D;L¥ Dy;u + (a' D;j L* + b' D; L*) Dyu
—(3a' JdL)Djju — (3b' /AL)Dju — (dc/dL)u  a.e. Q, (13)
v=¢ ondf2s NI, v=20u/oL ondQsNQ.
We have du/9L € W2~1/P-P (395 NQ2) by Lemma 3 and Remark 2 (1), while ¢ € W2~1/7.p

(0925 N9<2). Take the second derivatives of u from (9) and substitute them into the right-hand
side of the equation above. This rewrites (13) into

s(x)
Lv = F(x) +/ (Lov) o ¥y (t,x)dt,  ae. Qs,
0 (14)
v=gpe W2 Urr ongQsnNaR, veWrrr ondQsnQ
with
F(x) := 3f (x)/0L + Liv(x) + Lou(x").

Here £;,i = 1,2, is a differential operator of order i with L°°-coefficients and Zg is a
second-order differential operator over the manifold Ns. We have € W24 ' (Ns) whence
Zzﬁ € L‘f/(Qg). Moreover, v € Wz"f(Qa) and Sobolev’s imbedding theorem implies £jv €
L"(2s) withr = nq/(n — q) when g < n and any r > 1 otherwise. Since 3f/dL € LP(X)
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by hypotheses, we get F € L4 (Qs) with ¢” = min{p, r, ¢'}. It is clear that ¢ = g’ with ¢’
given by (12), ¢’ > ¢ and therefore F € Lq’(th).

We will prove now that the solution v € W24 (s) of the non-local Dirichlet problem
(14) with F € Lq/(Qg), belongs to Wz*q/(Qg) when § is chosen small enough. For, take any
r € [q, q'] and set Wf’r (S2s) for the Sobolev space W2 (25) equipped with the non-dimen-
sional norm

. 2 2
el i) = Ntllzriy + SN Dullr@p) + 821 D2ullr o).

For an arbitrary w € W*z’r (R2s) we have fos(x) (Low) o ¥ p (¢, x")dt € L"(Q5) and therefore
there exists a unique solution Fw € W*2 ""(Qs) of the Dirichlet problem

s(x)
L(Fw) = F(x) +/ (Low) o 1//L(t,x/)dt a.a. x € Qs,
0
Fw=¢eW>Prr ondQsnNaQ, Fw=2du/dL e W* /PP ondQsNQ.

This defines a map F: W*z’r (R2s) — W*Z’r(Q(g) which turns out to be a contraction if § > 0
is taken small enough. In fact, for any wy, wj € W*2 " (Q25) we have

s(x)
L(Fwy — Fup) = / (Lo(wy —wn)) oY (¢, x)dt  aa x € Qs,
0 (15)

Fw; — Fwy =0 on d%2s.

In order to employ the L"-a priori estimates for (15) (cf. [2]) we have to control the depen-
dence on § therein. That is why, we first dilate Q25 into 8§~1Q; for which 3(§125) € Cc1!
uniformly in 8, and then apply the cited estimates. A procedure, similar to the one from the
Proof of Lemma 2.2 and Equation (2.12) in [12] gives

s(x)
151 = Funllyzegy = €8 | [ (Catwr = w0 w1 (16)
* 0

L (25)
with a constant C independent of § > 0. Moreover, f(; *) go V¥ (t,x")dr € L"(Qs) for each

g(x) € L"(R2s) and application of Jensen’s integral inequality leads to

s(x)
H/ go ¥y (r,x)dr < Cn}zax [sGOlllglLr s < CdllgllLrs)- (17)
0 s

L"(S25)

This way, remembering |s(x)| < éVx € Qs, (16) rewrites as

3
|Fwi = Funllyar g, < C8 121 — wa)lzr gy < Colwr — wallyr g,

(25) —

whence

”fwl - fw2||w*2r(96) S KHwI - w2||W*2'r(Qg)’ K < 1

if § > 0 is fixed small enough. Therefore, F is a contraction mapping from Wf " (Qs) into
itself for each r € [¢, ¢'] if § > 0 is chosen sufficiently small. The unique fixed point of
F belongs to W2r (S2s) for each r € [g, 4’1, and since v € W24(2s) solves (14) and is
therefore already a fixed point of F, we conclude v € Wz*q,(Qg).

Indeed, this yields u € W24 (Q2s) with ¢/ > g on the base of & € W24 (\) and (9).
To arrive at u € WP () it suffices to repeat the above procedure finitely many times with
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q' instead of ¢ until ¢’ becomes equal to p. Noting that Lemma 3 remains valid with ¥’
replaced by Qs, we get u € W2P(Z”) as Lemma 4 claims.
To derive the bound (8), we note that (9), (17) and |s(x)| < 6 Vx € Qs imply

IDullLr sy < I1C5il L2y + Cllvllwir gy + C8ID™llLr @y, (18)

where C is independent of § and 5/2 is a second-order differential operator over the manifold
Nj acting on it € WP (Nj).

Set M := | fllzr.x) + l@llor@e. ) + litllwe-1p.p(g) for the sake of simplicity. Pass-
ing to §~'Q;s and using that v solves the problem (13), a procedure similar to that already
employed above gives

ID*vllLray) < C'(8) (M + 10u/d LIl w2-1ppasne) + Cllullwzrqy)-
while
10u/dLNlw2-1/p.p 20500y < CNOU/ILIw2p(s\q5) =< C'(¥) (M + ||”||LF(Q))
by (6), whence
ID?vllLr(@y) < C'@) (M + llullwiry) + ClIDullLr(gy). (19)

Further on, extending Z’zﬁ as constant in 25 along the L-trajectories through the points of
N, and using |s(x)| < § for each x € Qs, we get

A

L5l e sy < C8YPILATILr gy < C8YP I w2p g
C'(8) (M + lullw2-vrpey) + C8YPIF Lo
C'(8) (M + lullri) + C8PIF Loy (20)

IA

IA

as consequence of the L”-estimates for the problem (10) and Lemma 3.
Turning to the local coordinate system centered at xo € N (see (10) and (11)) in which
/0L = 9/0dx,, we define the function

n
F'(x0) = f & x) = D a™ (¢, x) Div(x, x,) = b (x, x)v (', x).
i=1

It is clear that the trace of F’(x’, x,,) on N along the L-trajectories is exactly F’ given by
(11) and [12, Equation (2.9)] gives

SYPIF Loy < C (I1F lris) + 8IOF /AL Lo (gy)) -
This way (20) becomes
I1L5T 0 Lp (5 < C'(8) (M + llullwrpgy) + I0lwiry)) + CSID* VL (05
<C') M+ llullwrr g + ||U||lep(95)) + C3||D2M||LP(S25)~ (21)
It follows from (19) and (21) that (18) takes on the form
ID?ullLr s < C'6) (M + llullwiry + I0lwiry) + COIID Ul Lr(y)

with C independent of 6. Fixing § > 0 small enough, we get into

||M||W2,p(g25) =C (M + ”u”leI’(Q(;) + ||U||W1v17(93))~ (22)
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The estimate (8) follows from (22) by interpolation. In fact, since § is small we may suppose
Qs C ' c ¥ and

leellwzp sy < Nullwr @y + lllwzr@yoy)
=< C (M +lluller@) + lullwir@y + I0lwirgy)
< C(M+ ulrr@ + lullwirsry + 10lwies) (23)

by virtue of (22) and Lemma 3 applied to the term [|u|lyy2.»o\q;) With €25 instead of .
On the other hand, assuming some minimal smoothness of %" and %", the interpolation
inequality implies

lvllwirsry < €lvliwzr sy + C@ElVILr sy, Ve >0,
while
lvllw2rzy <C (M + llullLr) + ||M||W2,p(2”))
in view of (6). This way, (23) becomes
lullw2rzry < ellullwzr s + C(e) (M + llullLr (@) + ||M||lel>():”))’
which reads
lullw2pzn < C (M + llullLr ) + ||M||lep(z//))

after choosing ¢ small enough. To get the estimate (8), it remains to apply once again the
interpolation inequality to the term [|u |y 1.p (5. This completes the proof of Lemma 4. O

4 Concluding remarks

We will briefly sketch here some important consequences of the improving-of-integrability
property and the a priori estimate (8) as stated in Theorem 1. The interested reader is referred
to [12] for the proofs, while [14] provides for generalizations to the case of tangency set £
which is no anymore a codimension one submanifold of 9<2, but may have positive surface
measure.

Maximum principle and uniqueness in W27 () for each p > 1.
Lemma 5 Assume (1)-(3), c(x) < 0a.e. Qandletu € WI%]’C" (Q) N CY(Q) satisfy
[aif (x)Djju + b (xX)Dju +c(x)u >0 a.e Q,
du/dl <0 ondQ", u/d€ >0 ono2~, u<0 onk.
Then u(x) < 0 on Q.

The unicity of the W27 ()-solutions to (MP) for each p > 1 is a direct consequence of
the maximum principle and the improving-of-summability property.

Corollary 6 Assume (1)—(3) and c(x) <0ae Q. Letu, v e WZP(Q) be two solutions to
(MP)withp > 1.Thenu = v in Q.

Refined A Priori Estimate and Unique Solvability in WZ’I’(SZ) for each p > 1 when
c(x) <0 a.e. . In case the coefficient c(x) of £ is non-positive, the bound (8) could be
considerably refined by dropping out ||| z» () from the right-hand side.
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Lemma 7 Assume (1)-(3) and c(x) < 0 a.e. Q. Letu € W>P(Q),p > 1, be a strong
solution to (MP) with f € FP(Q, %), ¢ € P(0Q, T) and p € WE1/p-r(£).
Then there exists a constant C, depending on known quantities only, such that

lullw2r@y < C (I flFr@.5) + l@lloroa.s) + lnllwe-1rpe)- (24)

The a priori estimate (24) yields strong solvability of the Poincaré problem (MP) in W27 ()
for arbitrary p > 1 whenever the uniqueness hypotheses of Corollary 6 hold. In fact, approx-
imating (MP) by problems with C*°-smooth data and using the existence results from [3,4]
or [22], 24)! gives

Theorem 8 Assume (1)-(3) and c(x) < 0 a.e. Q. Then, for each p > 1 the Poincaré prob-
lem (MP) is uniquely solvable in W>P(Q) for arbitrary f € FP(Q, %), ¢ € P (IQ, X)
and . € Wr1/p-p(g).

(MP) is a problem of Fredholm type with index zero. Let p > 1 be arbitrary and set
W?2P(Q, ) for the Banach space of functions u € W27 () such that du/dL € W>P (%)
and normed by |lu[l\y2r(q 5y = lullw2rq) + 10u/9L|y2.p(x). Define the kernel and the
range of (MP) by

Kpi={ueW*P(Q,2): Lu=0ae. Q, u/d¢=00ndQ, u=0o0nc},
Ry = FP(Q, T) x ®P(IQ, T) x W 1/Pr(g),

Theorem 9 Under the hypotheses (1)~(3), for any p € (1, 00) there exists a closed subspace
R of finite codimension in 'R, such that for arbitrary (f, ¢, 1) € R the modified Poincaré
problem (MP) has a solution u € W2P(Q). Moreover, dim Kp = codimg , R and if, in
particular, c(x) < 0 a.e. 2, then K, = {0}, ’fép = R and (M'P) is uniquely solvable for
arbitrary (f, ¢, 1) € Rp.

In terms of the Poincaré problem (MP), Theorem 9 sounds like

Corollary 10 Suppose (1)—(3) and let p > 1 be any number. Then, either
(A) the homogeneous problem

Lu=0 ae Q, Bu=0 onoR2, u=0 oné&

has only the trivial solution and then the non-homogeneous problem (MP) is uniquely solv-
able in W2P(Q) for arbitrary (f, ¢, ) € FP(Q, ) x ®P (3, T) x W21/ €); or

(B) the homogeneous problem admits non-trivial solutions which span a subspace of
W2P(Q) of finite dimension k > 0. Then the non-homogeneous problem (MP) is solv-
able only for those (f, ¢, n) € FP(Q, X)) x &P (9, ¥) x W2=1/p-r (&) which satisfy k
complementary conditions.
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