$W^{2,p}$ -a priori estimates for the emergent Poincaré Problem

Dian K. Palagachev

Received: 25 May 2007 / Accepted: 28 May 2007 / Published online: 6 July 2007 © Springer Science+Business Media LLC 2007

Abstract We derive $W^{2,p}(\Omega)$ -a priori estimates with *arbitrary* $p \in (1, \infty)$, for the solutions of a degenerate oblique derivative problem for linear uniformly elliptic operators with low regular coefficients. The boundary operator is given in terms of directional derivative with respect to a vector field ℓ that is tangent to $\partial\Omega$ at the points of a non-empty set $\mathcal{E} \subset \partial\Omega$ and is of *emergent* type on $\partial\Omega$.

Keywords Uniformly elliptic operator \cdot Poincaré problem \cdot Emergent vector field \cdot Strong solution \cdot A priori estimates $\cdot L^p$ -Sobolev spaces

Mathematics Subject Classification (2000) Primary: 35J25 · 35R25; Secondary: 35R05 · 35B45 · 35H20 · 58J32

1 Introduction

The article deals with regularity in the Sobolev spaces $W^{2,p}(\Omega), \forall p \in (1, \infty)$, of the strong solutions to the oblique derivative problem

$$\mathcal{L}u := a^{ij}(x)D_{ij}u + b^{i}(x)D_{i}u + c(x)u = f(x) \quad \text{a.e. } \Omega,$$

$$\mathcal{B}u := \partial u/\partial \ell = \varphi(x) \quad \text{on } \partial\Omega,$$

$$(\mathcal{P})$$

where \mathcal{L} is a uniformly elliptic operator with low regular coefficients and \mathcal{B} is prescribed in terms of a directional derivative with respect to the unit vector field $\ell(x) = (\ell^1(x), \dots, \ell^n(x))$ defined on $\partial\Omega$, $n \ge 3$. Precisely, we are interested in the Poincaré problem (\mathcal{P}) (cf. [16,17, 20]), that is, a situation when $\ell(x)$ becomes *tangential* to $\partial\Omega$ at the points of a non-empty subset \mathcal{E} of $\partial\Omega$.

D. K. Palagachev (🖂)

Dipartimento di Matematica, Politecnico di Bari,

Via E. Orabona, 4, 70 125 Bari,

Italy

e-mail: dian@dm.uniba.it; palaga@poliba.it

From a mathematical point of view, (\mathcal{P}) is *not* an elliptic boundary value problem. In fact, it follows from the general PDEs theory that (\mathcal{P}) is a *regular (elliptic)* problem *if and* only if the Shapiro–Lopatinskij complementary condition is satisfied which means ℓ must be transversal to $\partial\Omega$ when $n \geq 3$ and $|\ell| \neq 0$ as n = 2. If ℓ is *tangent* to $\partial\Omega$ then (\mathcal{P}) is a *degenerate* problem and new effects occur in contrast to the regular case. The qualitative properties of (\mathcal{P}) depend on the behaviour of ℓ near the set of tangency \mathcal{E} and especially on the way the normal component $\gamma \mathbf{v}$ of ℓ changes or no its sign (with respect to the outward normal \mathbf{v} to $\partial\Omega$) on the trajectories of ℓ when these cross \mathcal{E} . The main results were obtained by Hörmander [5], Egorov and Kondrat'ev [1], Maz'ya [8], Maz'ya and Paneah [9], Melin and Sjöstrand [10], Paneah [15] and good surveys and details can be found in Popivanov and Palagachev [20] and Paneah [16]. The problem (\mathcal{P}) has been studied in the framework of Sobolev spaces $H^s (\equiv H^{s,2})$ assuming C^{∞} -smooth data and this naturally involved techniques from the pseudo-differential calculus.

The simplest case arises when $\gamma := \ell \cdot \nu$, even if zero on \mathcal{E} , conserves the sign on $\partial \Omega$ (Fig. 1). Then \mathcal{E} and ℓ are of *neutral* type (a terminology coming from the physical interpretation of (\mathcal{P}) in the theory of Brownian motion, cf. [20]) and (\mathcal{P}) is a problem of Fredholm type [1]. Assume now that γ changes the sign from "-" to "+" in positive direction along the ℓ -integral curves through the points of \mathcal{E} . Then ℓ is of *emergent* type and \mathcal{E} is called *attracting* manifold. The new effect occurring now is that the *kernel* of (\mathcal{P}) is *infinite-dimensional* [5] and to get a well-posed problem one has to modify (\mathcal{P}) by prescribing the values of u on \mathcal{E} (cf. [1]). Finally, suppose the sign of γ changes from "+" to "-" along the ℓ -trajectories. Now ℓ is of submergent type and \mathcal{E} corresponds to a repellent manifold. The problem (\mathcal{P}) has infinite-dimensional cokernel [5] and Maz'ya and Paneah [9] were the first to propose a relevant modification of (\mathcal{P}) by violating the boundary condition at the points of \mathcal{E} . As result, a Fredholm problem arises, but the restriction $u|_{\partial\Omega}$ has a finite jump at \mathcal{E} . What is the common feature of the degenerate problems, independently of the type of ℓ , is that the solution "loses regularity" near the set of tangency from the data of (\mathcal{P}) in contrast to the non-degenerate case when each solution gains two derivatives from f and one derivative from φ . Roughly speaking, that loss of smoothness depends on the *order of contact* between ℓ and $\partial \Omega$ and is given by the *subelliptic* estimates obtained for the solutions of degenerate problems (cf. [3–5,9]). Precisely, if ℓ has a contact of order k with $\partial \Omega$ then the solution of (P) gains 2 - k/(k+1) derivatives from f and 1 - k/(k+1) derivatives from φ .

For what concerns the geometric structure of \mathcal{E} , it was supposed initially to be a submanifold of $\partial\Omega$ of codimension one. Melin and Sjöstrand [10] and Paneah [15] were the first to study the Poincaré problem (\mathcal{P}) in a more general situation when \mathcal{E} is a massive subset of $\partial\Omega$ with positive surface measure, allowing \mathcal{E} to contain arcs of ℓ -trajectories of *finite* length. These results were extended to Hölder's spaces by Winzell [21,22] who studied (\mathcal{P}) assuming $C^{1,\alpha}$ -smoothness of the coefficients of \mathcal{L} .

When dealing with non-linear Poincaré problems, however, we have to dispose of precise information on the linear problem (\mathcal{P}) with coefficients less regular than C^{∞} (see [11,18–20]). Indeed, a priori estimates in $W^{2,p}$ for solutions to (\mathcal{P}) would imply easily pointwise

Fig. 1 Neutral (a), Emergent (b) and Submergent (c) vector field ℓ

estimates for *u* and *Du* for suitable values of p > 1 through the Sobolev imbeddings. This way, we are naturally led to consider (\mathcal{P}) in a *strong* sense, that is, to searching for solutions from $W^{2,p}$ which satisfy $\mathcal{L}u = f$ almost everywhere (a.e.) in Ω and $\mathcal{B}u = \varphi$ holds in the sense of trace on $\partial \Omega$.

In the papers [3,4] by Guan and Sawyer solvability and fine subelliptic estimates have been obtained for (\mathcal{P}) in $H^{s,p}$ -spaces ($\equiv W^{s,p}$ for integer *s*!). However [3], treats operators with C^{∞} -coefficients and this determines the technique involved and the results obtained, while in [4] the coefficients are $C^{0,\alpha}$ -smooth, but the field ℓ is of finite type, that is, it has a *finite* order of contact with $\partial\Omega$.

The main goal of the article is to derive a priori estimates in Sobolev's classes $W^{2,p}(\Omega)$ with any $p \in (1, \infty)$ for the solutions to the Poincaré problem (\mathcal{P}), weakening both Winzell's assumptions on $C^{1,\alpha}$ -regularity of the coefficients of \mathcal{L} and these of Guan and Sawyer on the *finite type* of ℓ . We deal with the case of *emergent type* vector field ℓ and, for the sake of simplicity, we suppose that \mathcal{E} is a submanifold of $\partial\Omega$ of *codimension one*. As already mentioned, the *kernel of* (\mathcal{P}) *is infinite dimensional* and in order to get a well-posed problem we have to prescribe Dirichlet boundary condition on \mathcal{E} . Thus, we consider the modified Poincaré problem

$$\mathcal{L}u = f(x) \quad \text{a.e. } \Omega, \\ \mathcal{B}u = \varphi(x) \quad \text{on } \partial\Omega, \quad u = \mu(x) \quad \text{on } \mathcal{E}$$
(MP)

instead of (\mathcal{P}) . Indeed, the loss of smoothness mentioned, imposes some more regularity of the data near the set \mathcal{E} . We assume that the coefficients of \mathcal{L} are Lipschitz continuous near \mathcal{E} while only continuity (and even discontinuity controlled in VMO) is allowed away from \mathcal{E} . Similarly, ℓ is a Lipschitz vector field on $\partial\Omega$ with Lipschitz continuous first derivatives near \mathcal{E} , and *no restrictions* on the order of contact with $\partial\Omega$ are imposed.

Our main result is the a priori estimate from Theorem 1 for each $W^{2,p}(\Omega)$ -solution to (\mathcal{MP}) with arbitrary $p \in (1, \infty)$. The background of our approach lies in the fact that $\partial u / \partial \ell$ is a strong solution to a Dirichlet-type problem near \mathcal{E} with right-hand side depending on the solution u itself. Precisely, let \mathcal{N} be the manifold formed by the inward normals to $\partial \Omega$ starting from \mathcal{E} and suppose ℓ is appropriately extended in Ω . Thanks to the emergent type of ℓ , any point x near \mathcal{N} could be reached from a unique $x' \in \mathcal{N}$ through an ℓ -trajectory and integration of $\partial u/\partial \ell$ along it expresses u(x) in terms of u(x') and integral of $\partial u/\partial \ell$ over the arc connecting x' and x. The supplementary condition $u|_{\mathcal{E}} = \mu$ provides for a $W^{2,p}(\mathcal{N})$ estimate for the restriction $u|_{\mathcal{N}}$ which solves a uniformly elliptic Dirichlet problem over the manifold \mathcal{N} . Since $\partial u/\partial \ell$ is a local solution of a Dirichlet-type problem, the L^p -theory of such problems gives a bound for the $W^{2,p}$ -norm of $\partial u/\partial \ell$ in terms of the same norm of u. This way, a dynamical systems approach based on integration of these norms along the ℓ -trajectories through \mathcal{N} , leads to an estimate for the $W^{2,p}$ -norm of u near \mathcal{N} , $||u||_{W^{2,p}}$, in terms of known quantities plus $C \|u\|_{W^{2,p}}$, where the multiplier C is small when the arclengths of the ℓ -trajectories joining x with x' are small. Indeed, that procedure gives an a priori bound for $||u||_{W^{2,p}}$ in a neighbourhood of \mathcal{E} . Away from \mathcal{E} , (\mathcal{MP}) is a regular oblique derivative problem and the $W^{2,p}(\Omega)$ -a priori estimate follows from [7]. Another advantage of this approach is the *improving-of-integrability* property of the problem (\mathcal{MP}) . Loosely speaking, it means that, even if (\mathcal{MP}) is a *degenerate* problem and therefore the solution loses derivatives from the data f and φ , it behaves as an *elliptic* problem for what concerns the degree p of integrability. That is, if $u \in W^{2,q}(\Omega)$ is a solution to (\mathcal{MP}) with $f \in L^p(\Omega)$ and $\partial f/\partial \ell \in L^p$ near $\mathcal{E}, \varphi \in W^{1-1/p,p}(\partial \Omega)$ and $\varphi \in W^{2-1/p,p}$ near $\mathcal{E}, \mu \in W^{2-1/p,p}(\mathcal{E}_0)$ where $p \in [q, \infty)$, then $u \in W^{2, p}(\Omega)$.

Concluding this introduction, we refer the reader to the articles [12, 13, 14], where various outgrowths of the $W^{2,p}(\Omega)$ -a priori estimate and the *improving-of-integrability* property are derived for the Poincaré problem (\mathcal{MP}), such as maximum principle, uniqueness in $W^{2,p}(\Omega)$ for all p > 1, strong solvability when $c(x) \le 0$ a.e. Ω , and it is proven that (\mathcal{MP}), even if a degenerate oblique derivative problem, is one of Fredholm type with index zero.

2 Improving of summability and W^{2, p}-a priori estimate

We are given a bounded domain $\Omega \subset \mathbb{R}^n$, $n \ge 3$, with reasonably smooth boundary for which $\mathbf{v}(x) = (v^1(x), \dots, v^n(x))$ is the unit *outward* normal at the point $x \in \partial \Omega$. Let $\boldsymbol{\ell}(x) = (\ell^1(x), \dots, \ell^n(x))$ be a unit vector field defined on $\partial \Omega$ and decompose it into a sum of tangential and normal components, $\boldsymbol{\ell}(x) = \boldsymbol{\tau}(x) + \gamma(x)\mathbf{v}(x)$ at each $x \in \partial \Omega$. Here $\boldsymbol{\tau}(x), \boldsymbol{\tau} : \partial \Omega \to \mathbb{R}^n$, is the projection of $\boldsymbol{\ell}(x)$ on the tangent hyperplane to $\partial \Omega$ at the point $x \in \partial \Omega$ (see Fig. 2), while $\gamma:\partial \Omega \to \mathbb{R}$ stands for the Euclidean inner product $\gamma(x) := \boldsymbol{\ell}(x) \cdot \mathbf{v}(x)$. Indeed, the set of zeroes of the function $\gamma(x)$,

$$\mathcal{E} := \left\{ x \in \partial \Omega \colon \gamma(x) = 0 \right\}$$

is the subset of the boundary where the field $\ell(x)$ becomes tangent to it.

Set further $\partial \Omega^{\pm}$ for the *relatively open* sets (see Fig. 2)

$$\partial \Omega^+ := \{x \in \partial \Omega : \gamma(x) > 0\}, \quad \partial \Omega^- := \{x \in \partial \Omega : \gamma(x) < 0\}$$

so that \mathcal{E} is the common boundary of $\partial \Omega^+$ and $\partial \Omega^-$, $\partial \Omega = \partial \Omega^+ \cup \partial \Omega^- \cup \mathcal{E}$ and codim $\partial_{\Omega} \mathcal{E} = 1$. It is clear that $\partial \Omega^+$ is the set of all boundary points *x* where the field $\ell(x)$ points *outwards* Ω , whereas it is pointed *inward* Ω on $\partial \Omega^-$. Regarding \mathcal{E} , we will suppose ℓ is strictly transversal to it and directed from $\partial \Omega^-$ into $\partial \Omega^+$.

The standard summation convention on repeated indices is adopted throughout and $D_i := \partial/\partial x_i$, $D_{ij} := \partial^2/\partial x_i \partial x_j$. The class of functions with Lipschitz continuous *k*th order derivatives is denoted by $C^{k,1}$, $W^{k,p}$ stands for the Sobolev space of functions with L^p -summable weak derivatives up to order $k \in \mathbb{N}$ and normed by $\|\cdot\|_{W^{k,p}}$, while $W^{s,p}(\partial\Omega)$ with s > 0 non-integer, $p \in (1, +\infty)$, is the fractional-order Sobolev space. The Sarason class of functions

Fig. 2 The structure of the vector field ℓ

with vanishing mean oscillation is denoted by VMO(Ω). We use the standard parameterization $t \mapsto \Psi_L(t, x)$ for the *trajectory* (*phase curve and maximal integral curve*) of a given vector field L passing through the point x, that is, $\partial_t \Psi_L(t, x) = L \circ \Psi_L(t, x)$ and $\Psi_L(0, x) = x$.

Fix hereafter $\Sigma \subset \overline{\Omega}$ to be a *closed* neighbourhood of \mathcal{E} in $\overline{\Omega}$ and assume:

• *uniform ellipticity of the operator* \mathcal{L} : there exists a constant $\lambda > 0$ such that

$$\lambda^{-1}|\xi|^2 \le a^{ij}(x)\xi_i\xi_j \le \lambda|\xi|^2, \quad a^{ij}(x) = a^{ji}(x) \quad \text{a.a. } x \in \Omega, \ \forall \xi \in \mathbb{R}^n; \tag{1}$$

• regularity of the data:

$$\begin{aligned} a^{ij} &\in VMO(\Omega) \cap C^{0,1}(\Sigma) \equiv VMO(\Omega) \cap W^{1,\infty}(\Sigma), \\ b^{i}, \ c \in L^{\infty}(\Omega) \cap C^{0,1}(\Sigma) \equiv L^{\infty}(\Omega) \cap W^{1,\infty}(\Sigma), \\ \ell^{i} &\in C^{0,1}(\partial\Omega) \cap C^{1,1}(\partial\Omega \cap \Sigma); \quad \partial\Omega \in C^{1,1}, \quad \partial\Omega \cap \Sigma \in C^{2,1}; \end{aligned}$$
(2)

• emergent type of the vector field *l*:

 \mathcal{E} is a $C^{2,1}$ -smooth submanifold of $\partial\Omega$ of codimension one and $\ell(x)$ is strictly transversal to \mathcal{E} , pointing from $\partial\Omega^-$ into $\partial\Omega^+ \forall x \in \mathcal{E}$. (3)

We will employ an extension of the field ℓ near $\partial\Omega$ which preserves therein its regularity and geometric properties. For each $x \in \Omega$ and close enough to $\partial\Omega$ define $\Gamma := \{x \in \Omega: \operatorname{dist}(x, \partial\Omega) \leq d_0\}$ with $d_0 > 0$ sufficiently small. Thus, to each $x \in \Gamma$ there corresponds a unique $y(x) \in \partial\Omega$ closest to $x, y(x) \in C^{0,1}(\Gamma)$ while $y(x) \in C^{1,1}(\Gamma \cap \Sigma)$ (cf. [2, Chap. 14]). We set

$$\boldsymbol{L}(\boldsymbol{x}) := \boldsymbol{\ell}(\boldsymbol{y}(\boldsymbol{x})), \quad \boldsymbol{\tau}(\boldsymbol{x}) := \boldsymbol{\tau}(\boldsymbol{y}(\boldsymbol{x})) \quad \forall \, \boldsymbol{x} \in \Gamma, \qquad \mathcal{N} := \{ \boldsymbol{x} \in \Gamma \colon \, \boldsymbol{y}(\boldsymbol{x}) \in \mathcal{E} \}$$

It is clear from (2) and (3) that L, $\tau \in C^{0,1}(\Gamma) \cap C^{1,1}(\Gamma \cap \Sigma)$ and $|\tau|_{\mathcal{N}}| = 1$ in view of $\tau|_{\mathcal{N}} \equiv L|_{\mathcal{N}} \equiv \ell|_{\mathcal{E}}$. Moreover, \mathcal{N} is a $C^{1,1}$ -smooth manifold of dimension (n-1) and the vector field L is *strictly transversal* to it.

In order to state our main results, we need to introduce special functional spaces which take into account the higher regularity near \mathcal{E} of the data of (\mathcal{MP}) . For any $p \in (1, \infty)$ define the Banach spaces

$$\mathcal{F}^{p}(\Omega, \Sigma) := \left\{ f \in L^{p}(\Omega) : \partial f / \partial L \in L^{p}(\Sigma) \right\}$$

equipped with the norm $||f||_{\mathcal{F}^p(\Omega,\Sigma)} := ||f||_{L^p(\Omega)} + ||\partial f/\partial L||_{L^p(\Sigma)}$, and

$$\Phi^{p}(\partial\Omega,\Sigma) := \left\{ \varphi \in W^{1-1/p,p}(\partial\Omega) \colon \varphi \in W^{2-1/p,p}(\partial\Omega \cap \Sigma) \right\}$$

normed by $\|\varphi\|_{\Phi^p(\partial\Omega,\Sigma)} := \|\varphi\|_{W^{1-1/p,p}(\partial\Omega)} + \|\varphi\|_{W^{2-1/p,p}(\partial\Omega\cap\Sigma)}.$

In the sequel the letter *C* will denote positive constants depending on the data of (\mathcal{MP}) , that is, on *n*, *p*, λ , the respective norms of the coefficients of \mathcal{L} and \mathcal{B} in Ω and Σ , the regularity of $\partial\Omega$ and the lower bound for the angle between ℓ and \mathcal{E} [see (3)].

Our main result asserts that the couple $(\mathcal{L}, \mathcal{B})$ *improves the integrability* of solutions to (\mathcal{MP}) for any $p \in (1, \infty)$ and provides for an a priori *estimate* in the L^p -Sobolev scales for any such solution.

Theorem 1 Suppose (1)–(3) and let $u \in W^{2,q}(\Omega)$ be a strong solution to (\mathcal{MP}) with $f \in \mathcal{F}^p(\Omega, \Sigma), \varphi \in \Phi^p(\partial\Omega, \Sigma)$ and $\mu \in W^{2-1/p,p}(\mathcal{E})$ where $p \in [q, \infty)$. Then $u \in W^{2,p}(\Omega)$ and there is a constant C such that

$$\|u\|_{W^{2,p}(\Omega)} \le C \left(\|u\|_{L^{p}(\Omega)} + \|f\|_{\mathcal{F}^{p}(\Omega,\Sigma)} + \|\varphi\|_{\Phi^{p}(\partial\Omega,\Sigma)} + \|\mu\|_{W^{2-1/p,p}(\mathcal{E})} \right).$$
(4)

Springer

Some remarks follow which regard the behaviour of $\partial u/\partial L$ in a neighbourhood of the tangency set \mathcal{E} and traces of functions on (n-1)-dimensional manifolds.

Remark 2 (1) The directional derivative $\partial u/\partial L$ of any $W^{2,p}$ -solution to (\mathcal{MP}) is a $W^{2,p}$ (Σ)-function. In fact, $u \in W^{2,p}$ gives $\partial u/\partial L \in W^{1,p}(\Sigma)$ and taking the difference quotients in *L*-direction of the equation in (\mathcal{MP}) , we get $\partial u/\partial L \in W^{2,p}(\Sigma)$ in view of the regularity theory of uniformly elliptic equations (e.g. [2, Lemma 7.24, Chap. 8]). Moreover, $\partial u/\partial L$ is a solution to the Dirichlet problem

$$\mathcal{L}(\partial u/\partial L) = \partial f/\partial L + 2a^{ij}D_jL^kD_{ki}u + (a^{ij}D_{ij}L^k + b^iD_iL^k)D_ku - (\partial a^{ij}/\partial L)D_{ij}u - (\partial b^i/\partial L)D_iu - (\partial c/\partial L)u \quad \text{a.e. } \Sigma,$$
(5)
$$\partial u/\partial L = \varphi \quad \text{on } \partial \Omega \cap \Sigma,$$

where $L(x) = (L^1(x), ..., L^n(x))$ is the $C^{0,1}(\Gamma) \cap C^{1,1}(\Gamma \cap \Sigma)$ -extension of ℓ . Therefore, once having $u \in W^{2,p}(\Omega)$ and the estimate (4), the L^p -theory of the uniformly elliptic equations (cf. Chap. 9 in [2]) gives

$$\begin{aligned} \|\partial u/\partial L\|_{W^{2,p}(\widetilde{\Sigma})} &\leq C' \left(\|\partial u/\partial L\|_{L^{p}(\Sigma)} + \|\partial f/\partial L\|_{L^{p}(\Sigma)} + \|u\|_{W^{2,p}(\Sigma)} \right. \\ &\quad \left. + \|\varphi\|_{W^{2-1/p,p}(\partial\Omega\cap\Sigma)} \right) \\ &\leq C' \left(\|u\|_{L^{p}(\Omega)} + \|f\|_{\mathcal{F}^{p}(\Omega,\Sigma)} + \|\varphi\|_{\Phi^{p}(\partial\Omega,\Sigma)} + \|\mu\|_{W^{2-1/p,p}(\mathcal{E})} \right) (6) \end{aligned}$$

for each *closed* neighbourhood $\widetilde{\Sigma}$ of \mathcal{E} in $\overline{\Omega}$, $\widetilde{\Sigma} \subset \Sigma$, where the constant C' depends on dist $(\widetilde{\Sigma}, \Omega \setminus \Sigma)$ in addition. In other words, if a strong solution u to (\mathcal{MP}) belongs to $W^{2,p}(\Omega)$ then automatically $\partial u/\partial L \in W^{2,p}(\Sigma)$ provided $f \in \mathcal{F}^p(\Omega, \Sigma)$ and $\varphi \in \Phi^p(\partial\Omega, \Sigma)$. Moreover, it will be evident from (5) and the proofs given below, that instead of the Lipschitz continuity of the coefficients of \mathcal{L} in Σ as (2) asks, it suffices to have essentially bounded their L-directional derivatives.

(2) Let $u \in L^p_{loc}(\mathbb{R}^n)$, p > 1, and let \mathcal{N} be the (n - 1)-dimensional manifold of the inward normals through the points of \mathcal{E} constructed above, which can be represented locally as $\mathcal{N} = \{x \in \mathbb{R}^n : x_n = \Phi(x'), x' \in \mathcal{O}' \subset \mathbb{R}^{n-1}\}$ with $\Phi \in C^{1,1}(\mathcal{O}')$. Then the trace $u|_{\mathcal{N}}$ is not well-defined because \mathcal{N} has zero *n*-dimensional Lebesgue measure. However, if $u \in W^{1,p}_{loc}(\mathbb{R}^n)$ then $u|_{\mathcal{N}}$ exists and belongs to the fractional Sobolev space $W^{1-1/p,p}_{loc}(\mathcal{N})$. We are interested here on the intermediate situation when $u, \partial u/\partial x_n \in L^p_{loc}(\mathbb{R}^n)$. Then, redefining if necessary u on a set of zero measure, $u(x', x_n)$ is absolutely continuous function in x_n for a.a. x' and therefore $\partial u/\partial x_n(x', x_n)$ is a.e. classical derivative. This way, we define the trace $\tilde{u}(x', \Phi(x')) := u|_{\mathcal{N}}$ by the formula

$$\widetilde{u}(x',\Phi(x')) = u(x',x_n) - \int_{\Phi(x')}^{x_n} \frac{\partial u}{\partial x_n}(x',s) \mathrm{d}s \quad \text{a.a.} \ (x',\Phi(x')) \in \mathcal{N}.$$
(7)

It follows from Fubini's theorem that $\tilde{u} \in L^p_{loc}(\mathcal{N})$. Moreover, having $u \in W^{2,p}_{loc}(\mathbb{R}^n)$ with $\partial u/\partial x_n \in W^{2,p}_{loc}(\mathbb{R}^n)$ then $\tilde{u} \in W^{2,p}_{loc}(\mathcal{H})$ and the trace operator $u \mapsto \tilde{u}$ is compact one considered as mapping from $W^{2,p}_{loc}(\mathbb{R}^n)$ into $W^{1,p}_{loc}(\mathcal{N})$ (see [6]). That procedure applies to the more general situation in presence of the unit vector field L which is transversal to \mathcal{N} . Thus, straightening L in a neighbourhood of an arbitrary point of \mathcal{N} such that $\partial/\partial L \equiv \partial/\partial x_n$, \mathcal{N} could be represented locally as a graph of a function $\Phi \in C^{1,1}$, after that (7) applies. We will refer in the sequel to that procedure as *taking trace on* \mathcal{N} *along the* L-*trajectories through the points of* \mathcal{N} .

These observations explain the assumption $\mu \in W^{2-1/p,p}(\mathcal{E})$ in Theorem 1. In fact, suppose $u \in W^{2,p}(\Omega)$ is a solution of (\mathcal{MP}) . Then $u|_{\partial\Omega} \in W^{2-1/p,p}(\partial\Omega)$ and taking once again trace on the (n-2)-dimensional submanifold \mathcal{E} of $\partial\Omega$ would give $(u|_{\partial\Omega})|_{\mathcal{E}} \in W^{2-2/p,p}(\mathcal{E})$. However, as it follows from (5) and (6), the higher-order regularity assumptions on the data near \mathcal{E} ensure $\partial u/\partial \ell \in W^{2-1/p,p}(\Sigma \cap \partial\Omega)$ and since ℓ is strictly transversal to \mathcal{E} by (3), we have really $u|_{\mathcal{E}} \in W^{2-1/p,p}(\mathcal{E})$.

3 Proof of the main result

The statement of Theorem 1 will follow by the corresponding results *away* (Lemma 3) and *near* (Lemma 4) the set of tangency \mathcal{E} . Fix hereafter $\Sigma' \subset \Sigma'' \subset \Sigma$ to be *closed* neighbourhoods of \mathcal{E} in $\overline{\Omega}$.

Lemma 3 Suppose (1), (2) and let $u \in W^{2,q}(\Omega)$ be a strong solution to (\mathcal{MP}) with $f \in L^p(\Omega)$ and $\varphi \in W^{1-1/p,p}(\partial\Omega)$ where $p \in [q, \infty)$.

Then $u \in W^{2,p}(\Omega \setminus \Sigma')$ and there is an absolute constant C such that

$$\|u\|_{W^{2,p}(\Omega\setminus\Sigma')} \le C \left(\|u\|_{L^{p}(\Omega)} + \|f\|_{L^{p}(\Omega)} + \|\varphi\|_{W^{1-1/p,p}(\partial\Omega)} \right)$$

Proof The problem (\mathcal{MP}) is a *regular* oblique derivative problem out of Σ' , with a field ℓ *strictly* transversal to $\partial\Omega$ and pointing into Ω on $\partial\Omega^- \setminus \Sigma'$ and out of Ω on $\partial\Omega^+ \setminus \Sigma'$. The claims follow from or Theorem 2.3.1 of [7].

Lemma 4 Assume (1)–(3) and let $u \in W^{2,q}(\Omega)$ be a strong solution to (\mathcal{MP}) with $f \in \mathcal{F}^p(\Omega, \Sigma), \varphi \in \Phi^p(\partial\Omega, \Sigma)$ and $\mu \in W^{2-1/p,p}(\mathcal{E})$ where $p \in [q, \infty)$. Then $u \in W^{2,p}(\Sigma'')$ and

$$\|u\|_{W^{2,p}(\Sigma'')} \le C \left(\|u\|_{L^{p}(\Omega)} + \|f\|_{\mathcal{F}^{p}(\Omega,\Sigma)} + \|\varphi\|_{\Phi^{p}(\partial\Omega,\Sigma)} + \|\mu\|_{W^{2-1/p,p}(\mathcal{E})} \right).$$
(8)

Proof Turning back to the neighbourhood Γ of $\partial\Omega$ and the extension of ℓ , we recall $\tau|_{\mathcal{N}} \equiv L|_{\mathcal{N}}$ and $|\tau|_{\mathcal{N}}| = 1$. Therefore, there exists a closed neighbourhood U of \mathcal{N} ,

$$U := \left\{ x \in \Sigma \cap \Gamma : |\boldsymbol{\tau}(x)| \ge 1/2 \right\}$$

and setting $\tau'(x) := \tau(x)/|\tau(x)| \forall x \in U$, we get the *unit* vector field τ' coinciding with τ on \mathcal{N} . The strict transversality of τ' to \mathcal{N} assures that any point $\overline{x} \in U$ can be reached from a unique $\overline{x}' \in \mathcal{N}$ along a trajectory of τ' in the positive/negative direction. Setting $t \to \psi_{\tau'}(t, \overline{x})$ for the integral curve of τ' through \overline{x} , we have $\overline{x} = \psi_{\tau'}(\xi, \overline{x}'), \overline{x}' \in \mathcal{N}, \xi \in \mathbb{R}$ and sign $(\xi) = \operatorname{sign}(\gamma(y(\overline{x})))$ (see Fig. 3b). Introduce new coordinates $(\xi, \eta, \zeta) \in \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{n-2}$ in U as follows. For any $\overline{x} \in U$ we set $\xi(\overline{x}) \in \mathbb{R}$ to be the length (with sign) of the τ' -trajectory connecting \overline{x} with the unique $\overline{x}' \in \mathcal{N}$, i.e., $\overline{x} = \psi_{\tau'}(\xi(\overline{x}), \overline{x}')$ and sign $(\xi(\overline{x})) = \operatorname{sign}(\gamma(y(\overline{x})))$. Define further $\eta(\overline{x}) := \operatorname{dist}(\overline{x}', \partial\Omega) = \operatorname{dist}(\psi_{\tau'}(-\xi(\overline{x}), \overline{x}), \partial\Omega)$. Finally, $\zeta(\overline{x}) \in \mathcal{E}$ is given by $\zeta(\overline{x}) := y(\psi_{\tau'}(-\xi(\overline{x}), \overline{x})) \in \mathcal{E}$.

Let $S, \partial S \in C^{\infty}$, be the convex domain in the (η, ξ) -plane as given on Fig. 3a. Set $\Omega_{\delta} := \{x \in U : \zeta(x) \in \mathcal{E}, ((\eta(x), \xi(x)) \in \delta \cdot S\}$ for $\delta \in (0, \delta_0]$ with $\delta_0 \ll 1$ and $\delta \cdot S$ standing for the dilation of S of factor δ . Indeed, $\overline{\Omega_{\delta}} \subset U$, $\partial \Omega_{\delta} \in C^{1,1}$ and if δ_0 is small enough then the field L is tangential to $\partial \Omega_{\delta}$ only at the points of \mathcal{E} and these of $\mathcal{E}_{\delta} := (\mathcal{N} \cap \partial \Omega_{\delta}) \setminus \mathcal{E} = \mathcal{N} \cap \partial \Omega_{\delta} \cap \Omega$ and points outwards (inwards) Ω_{δ} at $x \in \partial \Omega_{\delta} \setminus (\mathcal{E} \cup \mathcal{E}_{\delta})$ when $y(x) \in \partial \Omega^+$ $(y(x) \in \partial \Omega^-)$. We define further

$$\mathcal{N}_{\delta} := \mathcal{N} \cap \Omega_{\delta}, \quad \partial \mathcal{N}_{\delta} := \mathcal{E} \cup \mathcal{E}_{\delta}.$$

🖉 Springer

Fig. 3 The *dashed curves* represent trajectories of the field τ' , parameterized by $t \to \psi_{\tau'}(t, \bar{x}), \bar{x}' \in \mathcal{N}, \bar{x} = \psi_{\tau'}(\xi(\bar{x}), \bar{x}'), \bar{x}'' = \psi_{\tau'}(\xi(\bar{x}''), \bar{x}')$. The other curves are *L*-trajectories parameterized by $t \to \psi_L(t, x)$ and $x = \psi_L(s(x'), x'), x'' = \psi_L(s(x''), x')$ with $x' \in \mathcal{N}$.

Each point $x \in U$ can be reached from $x' \in \mathcal{N}$ through an *L*-trajectory (see Fig. 3b). Setting $t \to \psi_L(t, x)$ for its parameterization, for each $x \in U$ there exists a unique value $s(x) \in C^{1,1}(U)$ of the parameter such that $\psi_L(-s(x), x) = x' \in \mathcal{N}$ and without loss of generality we may assume $|s(x)| \leq \delta \forall x \in \Omega_{\delta}$. Now, for any $x' \in \mathcal{N}$ define the trace of $f \in \mathcal{F}^p(\Omega, \Sigma)$ on \mathcal{N} along the *L*-trajectories by

$$\widetilde{f}(x') := f(x) - \int_0^{s(x)} \frac{\partial f}{\partial L} \circ \boldsymbol{\psi}_L(t, x') \mathrm{d}t, \quad x \in U.$$

It follows from Remark 2 that \tilde{f} is well-defined on \mathcal{N} and $\tilde{f} \in L^p(\mathcal{N})$. In the same manner, $u \in W^{2,q}(\Omega)$ and the trace $\tilde{u}(x') = u(x)|_{\mathcal{N}} := u \circ \psi_L(-s(x), x)$ does exist.

Setting

$$v(x) := \partial u(x) / \partial L \quad \forall x \in \Omega_{\delta}$$

it is obvious that

$$u(x) = \widetilde{u}(x') + \int_0^{s(x)} v \circ \boldsymbol{\psi}_L(t, x') dt$$

= $u \circ \boldsymbol{\psi}_L(-s(x), x) + \int_0^{s(x)} v \circ \boldsymbol{\psi}_L(t - s(x), x) dt, \quad \forall x \in \Omega_\delta.$ (9)

To get the improving-of-summability property for u(x) we will derive it for $\tilde{u}(x')$ and v(x), and we suppose p > q. Consider the action of \mathcal{L} on the functions defined in U which are constant on almost every L-trajectory through \mathcal{N} . This defines a second order operator \mathcal{L}' on the $C^{1,1}$ -smooth manifold \mathcal{N} , which is uniformly elliptic by virtue of (1) and the strict transversality of L to \mathcal{N} . This way, $\tilde{u}(x')$ is a $W^{2,q}(\mathcal{N})$ -solution of the following Dirichlet problem on the manifold \mathcal{N}_{δ}

$$\begin{cases} \mathcal{L}'\widetilde{u} = \widetilde{F}' & \text{a.e. } \mathcal{N}_{\delta}, \qquad \widetilde{u}|_{\partial \mathcal{N}_{\delta}} = \begin{cases} \mu \text{ on } \mathcal{E}, \\ u \text{ on } \mathcal{E}_{\delta}. \end{cases}$$
(10)

To get a local representation for the operator \mathcal{L}' we suppose, without loss of generality, that the field L is locally straighten in a neighbourhood of a point $x_0 \in \mathcal{N}$ such that $\partial/\partial L \equiv \partial/\partial x_n$ and \mathcal{N} has the form $\{x_n = 0\}$ near x_0 . Thus, setting $x' = (x_1, \ldots, x_{n-1}) \in \mathcal{O}' \subset \mathcal{N}$, we have $v = \partial u/\partial L = \partial u/\partial x_n$ and

$$\mathcal{L}'\widetilde{u}(x') \equiv \sum_{i,j=1}^{n-1} a^{ij}(x',0) D_{x'_i x'_j} \widetilde{u}(x') + \sum_{i=1}^{n-1} b^i(x',0) D_{x'_i} \widetilde{u}(x') + c(x',0) \widetilde{u}(x')$$

$$= \widetilde{F}'(x') := \widetilde{f}(x') - \sum_{i=1}^{n-1} a^{in}(x',0) (\widetilde{D_{x'_i} v})(x') - a^{nn}(x',0) (\widetilde{D_{x_n} v})(x')$$

$$- b^n(x',0) \widetilde{v}(x'),$$
(11)

where the "tilde" over a function means its trace value on \mathcal{N} taken along the *L*-trajectories in the sense of (7). We have $f \in \mathcal{F}^p(\Omega, \Sigma)$ and therefore $\tilde{f} \in L^p(\mathcal{N})$ as it follows from Remark 2(2). Further, $v \in W^{2,q}(\Sigma)$ in view of Remark 2(1) and thus $\tilde{v}, D_x v \in L^r(\mathcal{N})$ with r = (n-1)q/(n-q) if q < n and arbitrary r > 1 when $q \ge n$ (cf. Theorems 6.4.1 and 6.4.2 of [6]). This means $\tilde{F}' \in L^{q'}(\mathcal{N}_{\delta})$ with

$$q' = \begin{cases} \min\left\{p, \frac{(n-1)q}{n-q}\right\}, & \text{if } q < n, \\ p, & \text{otherwise.} \end{cases}$$
(12)

Further on, $\mu \in W^{2-1/p,p}(\mathcal{E})$ and $u|_{\mathcal{E}_{\delta}} \in W^{2-1/p,p}$ by Lemma 3. and the L^p -theory (see [2]) yields that the solution \tilde{u} of (10) belongs to $W^{2,q'}(\mathcal{N}_{\delta})$ with q' > q.

To get increasing of summability for $v = \partial u / \partial L$ also, we recall (see (5)) that the function v is a $W^{2,q}$ -solution of the Dirichlet problem

$$\begin{cases} \mathcal{L}v = \partial f/\partial L + 2a^{ij}D_jL^k D_{ki}u + (a^{ij}D_{ij}L^k + b^iD_iL^k)D_ku \\ -(\partial a^{ij}/\partial L)D_{ij}u - (\partial b^i/\partial L)D_iu - (\partial c/\partial L)u & \text{a.e. }\Omega_\delta, \end{cases}$$
(13)
$$v = \varphi \quad \text{on } \partial\Omega_\delta \cap \partial\Omega, \quad v = \partial u/\partial L \quad \text{on } \partial\Omega_\delta \cap \Omega.$$

We have $\partial u/\partial L \in W^{2-1/p,p}(\partial \Omega_{\delta} \cap \Omega)$ by Lemma 3 and Remark 2(1), while $\varphi \in W^{2-1/p,p}(\partial \Omega_{\delta} \cap \partial \Omega)$. Take the second derivatives of *u* from (9) and substitute them into the right-hand side of the equation above. This rewrites (13) into

$$\begin{cases} \mathcal{L}v = F(x) + \int_0^{s(x)} (\mathcal{L}_2 v) \circ \boldsymbol{\psi}_{\boldsymbol{L}}(t, x') dt, & \text{a.e. } \Omega_{\delta}, \\ v = \varphi \in W^{2-1/p, p}, & \text{on } \partial \Omega_{\delta} \cap \partial \Omega, & v \in W^{2-1/p, p} & \text{on } \partial \Omega_{\delta} \cap \Omega \end{cases}$$
(14)

with

$$F(x) := \partial f(x) / \partial L + \mathcal{L}_1 v(x) + \mathcal{L}_2 \widetilde{u}(x').$$

Here \mathcal{L}_i , i = 1, 2, is a differential operator of order i with L^{∞} -coefficients and \widetilde{L}_2 is a second-order differential operator over the manifold \mathcal{N}_{δ} . We have $\widetilde{u} \in W^{2,q'}(\mathcal{N}_{\delta})$ whence $\widetilde{L}_2 \widetilde{u} \in L^{q'}(\Omega_{\delta})$. Moreover, $v \in W^{2,q}(\Omega_{\delta})$ and Sobolev's imbedding theorem implies $\mathcal{L}_1 v \in L^r(\Omega_{\delta})$ with r = nq/(n-q) when q < n and any r > 1 otherwise. Since $\partial f/\partial L \in L^p(\Sigma)$

Deringer

by hypotheses, we get $F \in L^{q''}(\Omega_{\delta})$ with $q'' = \min\{p, r, q'\}$. It is clear that q'' = q' with q' given by (12), q' > q and therefore $F \in L^{q'}(\Omega_{\delta})$.

We will prove now that the solution $v \in W^{2,q}(\Omega_{\delta})$ of the non-local Dirichlet problem (14) with $F \in L^{q'}(\Omega_{\delta})$, belongs to $W^{2,q'}(\Omega_{\delta})$ when δ is chosen small enough. For, take any $r \in [q, q']$ and set $W^{2,r}_*(\Omega_{\delta})$ for the Sobolev space $W^{2,r}(\Omega_{\delta})$ equipped with the non-dimensional norm

$$\|u\|_{W^{2,r}_{*}(\Omega_{\delta})} := \|u\|_{L^{r}(\Omega_{\delta})} + \delta \|Du\|_{L^{r}(\Omega_{\delta})} + \delta^{2} \|D^{2}u\|_{L^{r}(\Omega_{\delta})}$$

For an arbitrary $w \in W^{2,r}_*(\Omega_{\delta})$ we have $\int_0^{s(x)} (\mathcal{L}_2 w) \circ \psi_L(t, x') dt \in L^r(\Omega_{\delta})$ and therefore there exists a unique solution $\mathcal{F}w \in W^{2,r}_*(\Omega_{\delta})$ of the Dirichlet problem

$$\begin{aligned} \mathcal{L}(\mathcal{F}w) &= F(x) + \int_0^{s(x)} (\mathcal{L}_2 w) \circ \boldsymbol{\psi}_{\boldsymbol{L}}(t, x') \mathrm{d}t \quad \text{ a.a. } x \in \Omega_{\delta}, \\ \mathcal{F}w &= \varphi \in W^{2-1/p, p} \quad \text{on } \partial\Omega_{\delta} \cap \partial\Omega, \quad \mathcal{F}w = \partial u / \partial \boldsymbol{L} \in W^{2-1/p, p} \quad \text{on } \partial\Omega_{\delta} \cap \Omega. \end{aligned}$$

This defines a map $\mathcal{F}: W^{2,r}_*(\Omega_{\delta}) \to W^{2,r}_*(\Omega_{\delta})$ which turns out to be a *contraction* if $\delta > 0$ is taken small enough. In fact, for any $w_1, w_2 \in W^{2,r}_*(\Omega_{\delta})$ we have

$$\begin{cases} \mathcal{L}(\mathcal{F}w_1 - \mathcal{F}w_2) = \int_0^{s(x)} (\mathcal{L}_2(w_1 - w_2)) \circ \boldsymbol{\psi}_{\boldsymbol{L}}(t, x') dt & \text{a.a. } x \in \Omega_{\delta}, \\ \mathcal{F}w_1 - \mathcal{F}w_2 = 0 & \text{on } \partial\Omega_{\delta}. \end{cases}$$
(15)

In order to employ the L^r -a priori estimates for (15) (cf. [2]) we have to control the dependence on δ therein. That is why, we first dilate Ω_{δ} into $\delta^{-1}\Omega_{\delta}$ for which $\partial(\delta^{-1}\Omega_{\delta}) \in C^{1,1}$ *uniformly* in δ , and then apply the cited estimates. A procedure, similar to the one from the Proof of Lemma 2.2 and Equation (2.12) in [12] gives

$$\left\|\mathcal{F}w_1 - \mathcal{F}w_2\right\|_{W^{2,r}_*(\Omega_{\delta})} \le C\delta^2 \left\| \int_0^{s(x)} (\mathcal{L}_2(w_1 - w_2)) \circ \boldsymbol{\psi}_{\boldsymbol{L}}(t, x') \mathrm{d}t \right\|_{L^r(\Omega_{\delta})}$$
(16)

with a constant *C* independent of $\delta > 0$. Moreover, $\int_0^{s(x)} g \circ \psi_L(t, x') dt \in L^r(\Omega_{\delta})$ for each $g(x) \in L^r(\Omega_{\delta})$ and application of Jensen's integral inequality leads to

$$\left\|\int_{0}^{s(x)} g \circ \boldsymbol{\psi}_{\boldsymbol{L}}(t, x') \mathrm{d}t\right\|_{L^{r}(\Omega_{\delta})} \leq C \max_{\Omega_{\delta}} |s(x)| \|g\|_{L^{r}(\Omega_{\delta})} \leq C\delta \|g\|_{L^{r}(\Omega_{\delta})}.$$
(17)

This way, remembering $|s(x)| \leq \delta \forall x \in \Omega_{\delta}$, (16) rewrites as

$$\|\mathcal{F}w_1 - \mathcal{F}w_2\|_{W^{2,r}_*(\Omega_{\delta})} \le C\delta^3 \|\mathcal{L}_2(w_1 - w_2)\|_{L^r(\Omega_{\delta})} \le C\delta \|w_1 - w_2\|_{W^{2,r}_*(\Omega_{\delta})}.$$

whence

$$\|\mathcal{F}w_1 - \mathcal{F}w_2\|_{W^{2,r}_*(\Omega_{\delta})} \le K \|w_1 - w_2\|_{W^{2,r}_*(\Omega_{\delta})}, \quad K < 1$$

if $\delta > 0$ is fixed small enough. Therefore, \mathcal{F} is a contraction mapping from $W^{2,r}_*(\Omega_{\delta})$ into itself for each $r \in [q, q']$ if $\delta > 0$ is chosen sufficiently small. The unique fixed point of \mathcal{F} belongs to $W^{2,r}(\Omega_{\delta})$ for each $r \in [q, q']$, and since $v \in W^{2,q}(\Omega_{\delta})$ solves (14) and is therefore already a fixed point of \mathcal{F} , we conclude $v \in W^{2,q'}(\Omega_{\delta})$.

Indeed, this yields $u \in W^{2,q'}(\Omega_{\delta})$ with q' > q on the base of $\tilde{u} \in W^{2,q'}(\mathcal{N}_{\delta})$ and (9). To arrive at $u \in W^{2,p}(\Omega_{\delta})$ it suffices to repeat the above procedure finitely many times with q' instead of q until q' becomes equal to p. Noting that Lemma 3 remains valid with Σ' replaced by Ω_{δ} , we get $u \in W^{2,p}(\Sigma'')$ as Lemma 4 claims.

To derive the bound (8), we note that (9), (17) and $|s(x)| \le \delta \forall x \in \Omega_{\delta}$ imply

$$\|D^2 u\|_{L^p(\Omega_{\delta})} \le \|\widetilde{\mathcal{L}}_2' \widetilde{u}\|_{L^p(\Omega_{\delta})} + C \|v\|_{W^{1,p}(\Omega_{\delta})} + C\delta \|D^2 v\|_{L^p(\Omega_{\delta})},$$
(18)

where *C* is independent of δ and $\widetilde{\mathcal{L}}'_2$ is a second-order differential operator over the manifold \mathcal{N}_{δ} acting on $\widetilde{u} \in W^{2,p}(\mathcal{N}_{\delta})$.

Set $M := ||f||_{\mathcal{F}^p(\Omega,\Sigma)} + ||\varphi||_{\Phi^p(\partial\Omega,\Sigma)} + ||\mu||_{W^{2-1/p,p}(\mathcal{E})}$ for the sake of simplicity. Passing to $\delta^{-1}\Omega_{\delta}$ and using that v solves the problem (13), a procedure similar to that already employed above gives

$$\|D^2v\|_{L^p(\Omega_{\delta})} \leq C'(\delta) \left(M + \|\partial u/\partial L\|_{W^{2-1/p,p}(\partial\Omega_{\delta}\cap\Omega)}\right) + C\|u\|_{W^{2,p}(\Omega_{\delta})},$$

while

$$\|\partial u/\partial L\|_{W^{2-1/p,p}(\partial\Omega_{\delta}\cap\Omega)} \le C \|\partial u/\partial L\|_{W^{2,p}(\Sigma\setminus\Omega_{\delta})} \le C'(\delta) \left(M + \|u\|_{L^{p}(\Omega)}\right)$$

by (6), whence

$$\|D^{2}v\|_{L^{p}(\Omega_{\delta})} \leq C'(\delta) \left(M + \|u\|_{W^{1,p}(\Omega_{\delta})}\right) + C\|D^{2}u\|_{L^{p}(\Omega_{\delta})}.$$
(19)

Further on, extending $\widetilde{\mathcal{L}}'_2 \widetilde{u}$ as constant in Ω_{δ} along the *L*-trajectories through the points of \mathcal{N}_{δ} , and using $|s(x)| \leq \delta$ for each $x \in \Omega_{\delta}$, we get

$$\begin{aligned} \|\widetilde{\mathcal{L}}_{2}^{\prime}\widetilde{u}\|_{L^{p}(\Omega_{\delta})} &\leq C\delta^{1/p} \|\widetilde{\mathcal{L}}_{2}^{\prime}\widetilde{u}\|_{L^{p}(\mathcal{N}_{\delta})} \leq C\delta^{1/p} \|\widetilde{u}\|_{W^{2,p}(\mathcal{N}_{\delta})} \\ &\leq C^{\prime}(\delta) \left(M + \|u\|_{W^{2-1/p,p}(\mathcal{E}_{\delta})}\right) + C\delta^{1/p} \|\widetilde{F}^{\prime}\|_{L^{p}(\mathcal{N}_{\delta})} \\ &\leq C^{\prime}(\delta) \left(M + \|u\|_{L^{p}(\Omega)}\right) + C\delta^{1/p} \|\widetilde{F}^{\prime}\|_{L^{p}(\mathcal{N}_{\delta})} \end{aligned}$$
(20)

as consequence of the L^p -estimates for the problem (10) and Lemma 3.

Turning to the local coordinate system centered at $x_0 \in \mathcal{N}_{\delta}$ (see (10) and (11)) in which $\partial/\partial L \equiv \partial/\partial x_n$, we define the function

$$F'(x', x_n) := f(x', x_n) - \sum_{i=1}^n a^{in}(x', x_n) D_i v(x', x_n) - b^n(x', x_n) v(x', x_n).$$

It is clear that the trace of $F'(x', x_n)$ on \mathcal{N}_{δ} along the *L*-trajectories is exactly \tilde{F}' given by (11) and [12, Equation (2.9)] gives

$$\delta^{1/p} \|\widetilde{F}'\|_{L^p(\mathcal{N}_{\delta})} \leq C \left(\|F'\|_{L^p(\Omega_{\delta})} + \delta \|\partial F'/\partial L\|_{L^p(\Omega_{\delta})} \right).$$

This way (20) becomes

$$\begin{aligned} \|\widetilde{\mathcal{L}}_{2}'\widetilde{u}\|_{L^{p}(\Omega_{\delta})} &\leq C'(\delta) \left(M + \|u\|_{W^{1,p}(\Omega_{\delta})} + \|v\|_{W^{1,p}(\Omega_{\delta})}\right) + C\delta\|D^{2}v\|_{L^{p}(\Omega_{\delta})} \\ &\leq C'(\delta) \left(M + \|u\|_{W^{1,p}(\Omega_{\delta})} + \|v\|_{W^{1,p}(\Omega_{\delta})}\right) + C\delta\|D^{2}u\|_{L^{p}(\Omega_{\delta})}. \end{aligned}$$
(21)

It follows from (19) and (21) that (18) takes on the form

$$\|D^{2}u\|_{L^{p}(\Omega_{\delta})} \leq C'(\delta) \left(M + \|u\|_{W^{1,p}(\Omega_{\delta})} + \|v\|_{W^{1,p}(\Omega_{\delta})}\right) + C\delta\|D^{2}u\|_{L^{p}(\Omega_{\delta})}$$

with C independent of δ . Fixing $\delta > 0$ small enough, we get into

$$\|u\|_{W^{2,p}(\Omega_{\delta})} \le C \left(M + \|u\|_{W^{1,p}(\Omega_{\delta})} + \|v\|_{W^{1,p}(\Omega_{\delta})} \right).$$
(22)

Deringer

The estimate (8) follows from (22) by interpolation. In fact, since δ is small we may suppose $\Omega_{\delta} \subset \Sigma' \subset \Sigma''$ and

$$\begin{aligned} \|u\|_{W^{2,p}(\Sigma'')} &\leq \|u\|_{W^{2,p}(\Omega_{\delta})} + \|u\|_{W^{2,p}(\Omega\setminus\Omega_{\delta})} \\ &\leq C\left(M + \|u\|_{L^{p}(\Omega)} + \|u\|_{W^{1,p}(\Omega_{\delta})} + \|v\|_{W^{1,p}(\Omega_{\delta})}\right) \\ &\leq C\left(M + \|u\|_{L^{p}(\Omega)} + \|u\|_{W^{1,p}(\Sigma'')} + \|v\|_{W^{1,p}(\Sigma')}\right) \end{aligned}$$
(23)

by virtue of (22) and Lemma 3 applied to the term $||u||_{W^{2,p}(\Omega \setminus \Omega_{\delta})}$ with Ω_{δ} instead of Σ' . On the other hand, assuming some minimal smoothness of $\partial \Sigma'$ and $\partial \Sigma''$, the interpolation inequality implies

$$\|v\|_{W^{1,p}(\Sigma')} \leq \varepsilon \|v\|_{W^{2,p}(\Sigma')} + C(\varepsilon) \|v\|_{L^{p}(\Sigma')}, \quad \forall \varepsilon > 0,$$

while

 $\|v\|_{W^{2,p}(\Sigma')} \le C \left(M + \|u\|_{L^{p}(\Omega)} + \|u\|_{W^{2,p}(\Sigma'')} \right)$

in view of (6). This way, (23) becomes

$$\|u\|_{W^{2,p}(\Sigma'')} \le \varepsilon \|u\|_{W^{2,p}(\Sigma'')} + C(\varepsilon) \left(M + \|u\|_{L^{p}(\Omega)} + \|u\|_{W^{1,p}(\Sigma'')}\right),$$

which reads

$$\|u\|_{W^{2,p}(\Sigma'')} \le C \left(M + \|u\|_{L^{p}(\Omega)} + \|u\|_{W^{1,p}(\Sigma'')}\right)$$

after choosing ε small enough. To get the estimate (8), it remains to apply once again the interpolation inequality to the term $||u||_{W^{1,p}(\Sigma'')}$. This completes the proof of Lemma 4.

4 Concluding remarks

We will briefly sketch here some important consequences of the improving-of-integrability property and the a priori estimate (8) as stated in Theorem 1. The interested reader is referred to [12] for the proofs, while [14] provides for generalizations to the case of tangency set \mathcal{E} which is no anymore a codimension one submanifold of $\partial \Omega$, but may have positive surface measure.

Maximum principle and uniqueness in $W^{2,p}(\Omega)$ for each p > 1.

Lemma 5 Assume (1)–(3), $c(x) \leq 0$ a.e. Ω and let $u \in W^{2,n}_{loc}(\Omega) \cap C^1(\overline{\Omega})$ satisfy

$$\begin{cases} a^{ij}(x)D_{ij}u + b^{i}(x)D_{i}u + c(x)u \ge 0 & a.e. \ \Omega, \\ \partial u/\partial \ell \le 0 & on \ \partial \Omega^{+}, \quad \partial u/\partial \ell \ge 0 & on \ \partial \Omega^{-}, \quad u \le 0 & on \ \mathcal{E} \end{cases}$$

Then $u(x) \leq 0$ on $\overline{\Omega}$.

The unicity of the $W^{2,p}(\Omega)$ -solutions to (\mathcal{MP}) for each p > 1 is a direct consequence of the maximum principle and the improving-of-summability property.

Corollary 6 Assume (1)–(3) and $c(x) \le 0$ a.e. Ω . Let $u, v \in W^{2,p}(\Omega)$ be two solutions to (\mathcal{MP}) with p > 1. Then $u \equiv v$ in $\overline{\Omega}$.

Refined A Priori Estimate and Unique Solvability in $W^{2,p}(\Omega)$ for each p > 1 when $c(x) \le 0$ a.e. Ω . In case the coefficient c(x) of \mathcal{L} is non-positive, the bound (8) could be considerably refined by dropping out $||u||_{L^p(\Omega)}$ from the right-hand side.

Lemma 7 Assume (1)–(3) and $c(x) \leq 0$ a.e. Ω . Let $u \in W^{2,p}(\Omega)$, p > 1, be a strong solution to (\mathcal{MP}) with $f \in \mathcal{F}^p(\Omega, \Sigma)$, $\varphi \in \Phi^p(\partial\Omega, \Sigma)$ and $\mu \in W^{2-1/p,p}(\mathcal{E})$.

Then there exists a constant C, depending on known quantities only, such that

$$\|u\|_{W^{2,p}(\Omega)} \le C \left(\|f\|_{\mathcal{F}^{p}(\Omega,\Sigma)} + \|\varphi\|_{\Phi^{p}(\partial\Omega,\Sigma)} + \|\mu\|_{W^{2-1/p,p}(\mathcal{E})} \right).$$
(24)

The a priori estimate (24) yields strong solvability of the Poincaré problem (\mathcal{MP}) in $W^{2,p}(\Omega)$ for arbitrary p > 1 whenever the uniqueness hypotheses of Corollary 6 hold. In fact, approximating (\mathcal{MP}) by problems with C^{∞} -smooth data and using the existence results from [3,4] or [22], (24)¹ gives

Theorem 8 Assume (1)–(3) and $c(x) \leq 0$ a.e. Ω . Then, for each p > 1 the Poincaré problem (\mathcal{MP}) is uniquely solvable in $W^{2,p}(\Omega)$ for arbitrary $f \in \mathcal{F}^p(\Omega, \Sigma), \varphi \in \Phi^p(\partial\Omega, \Sigma)$ and $\mu \in W^{2-1/p,p}(\mathcal{E})$.

 (\mathcal{MP}) is a problem of Fredholm type with index zero. Let p > 1 be arbitrary and set $\mathcal{W}^{2,p}(\Omega, \Sigma)$ for the Banach space of functions $u \in W^{2,p}(\Omega)$ such that $\partial u/\partial L \in W^{2,p}(\Sigma)$ and normed by $||u||_{W^{2,p}(\Omega,\Sigma)} := ||u||_{W^{2,p}(\Omega)} + ||\partial u/\partial L||_{W^{2,p}(\Sigma)}$. Define the *kernel* and the *range* of (\mathcal{MP}) by

$$\begin{split} \mathcal{K}_p &:= \big\{ u \in \mathcal{W}^{2,p}(\Omega, \Sigma) \colon \mathcal{L}u = 0 \text{ a.e. } \Omega, \quad \partial u / \partial \ell = 0 \text{ on } \partial \Omega, \quad u = 0 \text{ on } \mathcal{E} \big\}, \\ \mathcal{R}_p &:= \mathcal{F}^p(\Omega, \Sigma) \times \Phi^p(\partial \Omega, \Sigma) \times W^{2-1/p,p}(\mathcal{E}). \end{split}$$

Theorem 9 Under the hypotheses (1)–(3), for any $p \in (1, \infty)$ there exists a closed subspace $\widetilde{\mathcal{R}}_p$ of finite codimension in \mathcal{R}_p such that for arbitrary $(f, \varphi, \mu) \in \widetilde{\mathcal{R}}_p$ the modified Poincaré problem (\mathcal{MP}) has a solution $u \in W^{2,p}(\Omega)$. Moreover, dim $\mathcal{K}_p = \operatorname{codim}_{\mathcal{R}_p} \widetilde{\mathcal{R}}_p$ and if, in particular, $c(x) \leq 0$ a.e. Ω , then $\mathcal{K}_p = \{0\}, \widetilde{\mathcal{R}}_p \equiv \mathcal{R}_p$ and (\mathcal{MP}) is uniquely solvable for arbitrary $(f, \varphi, \mu) \in \mathcal{R}_p$.

In terms of the Poincaré problem (\mathcal{MP}) , Theorem 9 sounds like

Corollary 10 Suppose (1)–(3) and let p > 1 be any number. Then, either (A) the homogeneous problem

 $\mathcal{L}u = 0 \quad a.e. \ \Omega, \qquad \mathcal{B}u = 0 \quad on \ \partial \Omega, \quad u = 0 \quad on \ \mathcal{E}$

has only the trivial solution and then the non-homogeneous problem (\mathcal{MP}) is uniquely solvable in $W^{2,p}(\Omega)$ for arbitrary $(f, \varphi, \mu) \in \mathcal{F}^p(\Omega, \Sigma) \times \Phi^p(\partial\Omega, \Sigma) \times W^{2-1/p,p}(\mathcal{E})$; or

(B) the homogeneous problem admits non-trivial solutions which span a subspace of $W^{2,p}(\Omega)$ of finite dimension k > 0. Then the non-homogeneous problem (\mathcal{MP}) is solvable only for those $(f, \varphi, \mu) \in \mathcal{F}^p(\Omega, \Sigma) \times \Phi^p(\partial\Omega, \Sigma) \times W^{2-1/p,p}(\mathcal{E})$ which satisfy k complementary conditions.

References

- 1. Egorov, Y.V., Kondrat'ev, V.: The oblique derivative problem. Math. USSR Sbornik 7, 139–169 (1969)
- Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. 2nd edn. Springer, Berlin, Heidelberg, New York (1983)

¹ We refer the reader to [12] for a direct approach to the existence problem for (\mathcal{MP}) .

- Guan, P., Sawyer, E.: Regularity estimates for the oblique derivative problem. Ann. Math. 137, 1– 70 (1993)
- Guan, P., Sawyer, E.: Regularity estimates for the oblique derivative problem on non-smooth domains I. Chin. Ann. Math., Ser. B 16, 1–26 (1995); II, ibid. 17, 1–34 (1996)
- Hörmander, L.: Pseudodifferential operators and non-elliptic boundary value problems. Ann. Math. 83, 129–209 (1966)
- 6. Kufner, A., John, O., Fučík, S.: Function Spaces. Noordhoff, Leyden (1977)
- Maugeri, A., Palagachev, D.K., Softova, L.G.: Elliptic and Parabolic Equations with Discontinuous Coefficients. Math. Res., vol. 109. Wiley–VCH, Berlin (2000)
- Maz'ya, V.: On a degenerating problem with directional derivative. Math. USSR Sbornik 16, 429– 469 (1972)
- Maz'ya, V., Paneah, B.P.: Degenerate elliptic pseudodifferential operators and oblique derivative problem. Trans. Moscow Math. Soc. 31, 247–305 (1974)
- Melin, A., Sjöstrand, J.: Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem. Commun. Partial Differ. Equations 1, 313–400 (1976)
- Palagachev, D.K.: The tangential oblique derivative problem for second order quasilinear parabolic operators. Commun. Partial Differ. Equations 17, 867–903 (1992)
- Palagachev, D.K.: The Poincaré problem in L^p-Sobolev spaces I: codimension one degeneracy. J. Funct. Anal. 229, 121–142 (2005)
- Palagachev, D.K.: Neutral Poincaré Problem in L^p-Sobolev Spaces: regularity and fredholmness. Int. Math. Res. Notices 2006, Article ID 87540, p. 31 (2006)
- Palagachev, D.K.: The Poincaré problem in L^p-Sobolev spaces II: full dimension degeneracy. Commun. Partial Differ. Equations (2007) (to appear)
- 15. Paneah, B.P.: On a problem with oblique derivative. Soviet Math. Dokl. 19, 1568–1572 (1978)
- Paneah, B.P.: The Oblique Derivative Problem. The Poincaré Problem, Math. Topics, vol. 17. Wiley– VCH, Berlin (2000)
- Poincaré, H.: Lecons de Méchanique Céleste, Tome III, Théorie de Marées. Gauthiers–Villars, Paris (1910)
- Popivanov, P.R., Kutev, N.D.: The tangential oblique derivative problem for nonlinear elliptic equations. Commun. Partial Differ. Equations 14, 413–428 (1989)
- Popivanov, P.R., Kutev, N.D.: Viscosity solutions to the degenerate oblique derivative problem for fully nonlinear elliptic equations. Math. Nachr. 278, 888–903 (2005)
- Popivanov, P.R., Palagachev, D.K.: The Degenerate Oblique Derivative Problem for Elliptic and Parabolic Equations. Math. Res., vol. 93. Akademie–Verlag, Berlin (1997)
- 21. Winzell, B.: The oblique derivative problem I. Math. Ann. 229, 267–278 (1977)
- Winzell, B.: A boundary value problem with an oblique derivative. Commun. Partial Differ. Equations 6, 305–328 (1981)